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ABSTRACT

i
i

[y

V'A new. very simple and dependable field sediment sampler has
been developed. It is a multi-siphon device that samplef_ suspended
sand from seven elevations simultaneously. The 65 concentration
profiles that have been obtained so far are presented, complete
with hydrodynamics and bed sediment data. The profiles were
measured under breaking and non-breaking waves in a wide range
of coastal environments all over Australia. These data together
with a review of oscillatory boundary layer flow and the motion of
suspended sand in an accelerated non uniform flow lead to a range
of new insights into the processes of sediment entrainment under

waves.




1, INTRODUCTION

Sediment transport in the coastal environment is often a
result of the combined actions of waves and currents., A steady
current must at first sight seem more efficient as a sand transporter
than the back and forth motion of waves; but the process of picking
the sand up from the bed is dominated by the waves., The efficiency
of waves with respect of entrainment of sediment is due to two main
charactaristics of oscillatory water motion.

Firstly, the boundary layer of an oscillatory flow is thin:
a few centimetres for typical wave periods, which means that wave
induced near bed velocities and bed shear stresses become large.

Secondly, the periodic flow reversals cause the boundary
layer to separate from the bed twice every period and send dense
clouds of suspendad sediment upwards. This ig the first step of the
entrainment process by which the suspended sand reaches elevations
comparable to the wave boundary layer thickness. From this level
it may either start to settle out again or rigse further due to
the mixing action of currents or wave breaking.

The present report gives a detailed discussion of these pro-
cesses based on the literature and previous laboratory studies as
well as a large amount of field data collected by the Coastal
Studies Unit over the last two and a half years.

Chapter 2 deals with the hydrodynamic problems involved in
sediment transport calculations, mainly the structure of wave
boundary layers. Special emphagis is put onto developing formulae

relating quantities such as boundary layer thickness, bed shear
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stress and the turbulence structure with very few assumptions about
the nature of the flow.

Previous experimental studies fall into three categories and
the linking together of their results has so far been incomplaete.
Detailed velocity measurements like those of Kalkanis (1964) and
Jonsson and Carlsen (1976) give good information about the average
character of the flow and the shear stresses, but they get no direct
information about the turbulence structure. Such information has
become available later through the measurements of MacDonald
(1977), Nakato et. al. (1977), Du Toit and Sleath (1981) and
Kemp and Simons (1982). However, all of these except from Nakato
et, al. used artificial solid beds. Natural sand beds were used
by Carstens et. al. (1969) and lLofquist (1980) who measured energy
dissipation and bed friction. The major aim of the analysis is to
make the latter friction measurements useful for prediction of eddy
viscosities and vertical length scales over natural sand beds.

Chapter 3 is an analysis of the motion of suspended sadiment
particles in an accelerated, non uniform flow field. The approach
to the solution is new in that it splits the sediment particle
velocity 'GP into three parts from the outset, 'EP = Usvew. U is the
water velocity, W is the still water settling velocity and v is the
extra velocity which results from the fluid accelerations. Special
attention is paid to the case o0f sand in vortices because this is
the key to understanding the entrainment mechanism over rippled heds
under waves, and the resulting sediment digtributions. The simplest
approximation 3; 3 E*: and the very simple kinematic arguments are
used to gshow the essence of the trapping mechanism which makes it
possible for grains of nearly all sizes to travel together inside

migrating vortices. A procass which leads to vary similar dis-

R - .




'( . tributions of all grain sizes over ripples. This process is funda-
mentally unlike gradient diffusion which leads to vastly different
distributions for different grain sizes. The fact that sand and

}
p vortices travel together also explains why the distributions of sand

and turbulence are very similar as observed by Nakato et, al. (1977)
K and MacDonald (1977).
E' Chapter 4 describes the experimental equipment and experimental

technique. The sediment sampler was designed to sample a complete

profile of time averaged concentrations simultaneously. This was
done in orxder to overcoms the large scatter problem encountered in
previous field studies, e.g. Fairchild (1977) and Kana (1979).

After obtaining well defined concentration profiles the problem is
to extract paramesters that are both practically and theoratically
well defined, which can in turn be related to the flow of sediment
characteristics. In the present study we extract these parameters

from the profiles: co' €. and s.s. C° is the concentration at the

B
bed level, t-:B repregents the diffugivity inside the wave boundary

layer and es represents the larger diffusivity outside the boundary
layer, dus to wave breaking or currents. Some concentration profiles b
show an apparent increage in diffusivity or vertical length scale
with distance from the bed, although there is neither breaking waves
nor steady currents around to produce significant turbulence outside
the boundary layer. This apparent increase is due to the variability k
of settling velocity in the suspended material. A method for
correcting the observad diffusivities for this efiect is devised.

It is based on the diffusion equation and uses a continuous settling
velocity distribution which leads to vastly simpler calculations 1

than previous models that work with discreta size classes. 1

e
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Chapter 5 is a heuristic discussion and analysis of the field
measurements of the present study together with the results of
some previous laboratory investigations. The clearest results

are obtained in relation to the near bed sediment distributions.

u:' MR

Over fully developed vortex ripples we find exponential con-

centration profiles
c(z) = Cy exp(-z/!.s) (1.1)

where the length scale 9.3 is approximately equal to the ripple height.
Different grain sizes follow very similar distributions because the
entrainment mechanism is convective as described in Chapter 3. The
sediment gets trapped in the lee vortices while these are being
formed, and when the vortices are released and travel upwards, they
act as elevators for all grain sizes alike.

Over flat beds and round crested bed forms the vertical length
scale of the concentration profiles is typically ten times smallex

than over ripples, so it is rather difficult to obtain detailed

information about the profile structure. However,the present data )
give a good indication that the lower part of the profiles scale on
the hydraulic roughness length of the flat bed, and that the %
entrainment machanism within the wave boundary layer is predominantly 1
convective because the observed near bed length scales 7
') s (-eB/w) depend little on the settling velocity, .

The concentration magnitudes, C o is somewhat more difficult
to predict. It is probably valid to assume that co depends mainly K
on the skin friction Shields parameter, 9'. However, a proper cal- 1
culation of 0' for the laboratory data is difficult because most of

them are in the transition region between laminar and turbulent flow. 1

M



This makes a comparison between laboratory and field values
difficult, Furthermore the very different degrees of compaction
of sand beds in the field is likely to result in variable relations
betueen C, and 8.

The data available on external mixing from wave breaking
and currents are not yet sufficient for a detailed quantitative
study. Instead we have given a qualitative description of the
antrainment mechanisms due to two extremes: the heavily plunging

breaker and the gently spilling breaker.




2. HYDRODYNAMICS

The water motion in the nearshore area and the surfzone involves
velocities that vary over a large range of time scales, from diurnal
tides to harmonics of wind waves with periods less than a second.

It is often convenient to split the velocity, u, in two parts

u = u+d (2.1)

where u is the steady or quasi steady part and U is periodic with
zero mean.

The cutoff period, above which everything is considered quasi
steady depends on the problem under consideration. Sometimes avery-
thing above wind wave periocds (3 10 seconds) can be considered steady

in other cases even the tide must be considered unsteady.

WAVES

The most important part of the water motion is due to wind waves
and swell with periods between 5 and 20 seconds. At present there are
no theories for non periodic waves so for any theoretical considerations,
waves are assumed periodic. This is of course an idealized description
since the wave period is normally quite variable just like the wave
height H in the surf zone. The pressurs record in Figure 2.1 gives an
idea of this variability. It is necessary however for any theoretical
work to repraesent the incoming waves by a monocromatic wave train with
constant height., With respect to sediment transport the most relevant

wave period is the one determined from zero crossings of the near bed

~
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Figure 2.1: Instantaneous surface elevations measured by a pressure
transducer. The waves are spilling breakers under a slight onshore
wind (TEST 21, Broome 1981). Note that the time progresses from right
te left. With typical records like this, the meanings of such terms
as wave pericd and wave height are no longer trivial.




velocity because these flow reversals cause a break down of the boundary
layer structure.

Individual waves are best characterized by their zero downcrossing
height H, and for an ensemble of waves one may use either the average
H, the root-mean-square Hrms or the significant wave height Hs, which
is the average of the highest 1/3 of the waves. The relevance of each
of these measures depends on the phenomenon described. There is some
evidence that Hs is superior for describing ripplezgeometry (Nielsen
1981) while Hzms seems to be the best for describing sediment con-
centrations (Rasmussen and Fredsce 198l).

Since nearshore waves are often highly non linear and irreqular
the only way to get reliable information on the water motion at a
given spot is by measuring it locally.

The best way of measuring the velocity field is by using an array
of good flow meters. However,one may also derive the characteristic
wave induced velocities from pressure measuraments, and as long as
our main concern is the velocity right at the bed, we may use linear
wave theory. The relations between wave height and the pressure and

velocity fluctuations for a sinus wave are

cosh kz

H
B(z) = 093 Sinh kb (2.2)
)
1
= "™ cash kz
0(z) T sinh kh (2.3)

and for the near bed velocity amplitude U (o) which will be raferred to 1

in the following as aw we get

T sinh KA (2.4)
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the important parameter kh which is the local wave number, k = 27/L

times the water depthlis determined by the dispersion relation
koh = kh tanh kh (2.5)
This implicit relation has traditionally been solved numerically

and the results tabulated, however it is accurate enough and more

practical -to use the following explicit formula
1 11

ko= YRR [1 o+ en o+ am?] (2.6)

where ko is the deep water wave number
a

k, = /L = 4n¥lgrd) (2.7)
Equation (2.6) is exact in the limit koh + o and the relative error
is less than 0.0045 for koh < 2.5. In deeper water we recommend
the asymptotic expansion.

kh = koh (1 + 20 0% (2.8)

The two formulae (2.6) and (2.8) cover the whole range 0 < k h < »
with an error of less than 0.45 percent. Relative errors for the
two formulae and for a few simpler formulae as well are shown in
Pigure 2.2. Details about the derivation of equation (2.5) from

the linear wave dispersion relation are given by Nielsen (1982).




RELATIVE

o] ERROR

-2 koh)

koh (1 +2€

[RR(1+&koh)

E':Lﬂo 2.2:

Relative error for successive approximations to kh. We see

that the formulae (2.6) and (2.8) are much more accurate than the shal-
low water approximation /th and the deep watar expression koh, The two
of them together, matched at any value of h/L, between 0.3 and 0.4 will

cover the whole range with plenty accuracy for practical purposes,
(koh = 2mh/L,).




{| WAVE BOUNDARY LAYERS
4
The wave boundary layer is intuitively defined as the layer close

to the bottom, where the wave induced water motion is noticeably

affected by the boundary. This layer is normally very thin, i.e.

a few millimetres over a smooth, solid bed and a few centimetres over a
flat bed of loose sand. Bed forms like ripples will change the
structure of the boundary layer by introducing strong rythmic

vortices and the boundary layer over sharp crestad ripples will

extend to a height of four or five ripple heights or up to about

50 centimetres under field conditions.

It is a typical feature of escillatory boundary layers that the
velocity close to the boundary and the resulting shear strass T(t)
are ahead of the free flow, 4_(t). For laminar flow the shear
stress is 45 degrees ahead and for rough turbulent flow it is between
20 and 30 degrees ahead.

The shear stress in a simple harmonic, laminar flow is simple
harmonic, but in turbulent flow the variation with time is much more
complicated. When the ratio between the bed roughness, r and the
semi axcursion, a are small, the variation of T (t) is still quite
smooth and rather like a simple harmonic. This is the case for the

measurements of Jonsson and Carlsen (1976) where r/a was only

0.008, see Pigure 2.3. For flow over fully developed ripples,

the ratio r/a is of the order of magnitude one, and the flow near
the bed is dominated by the rythmic formation and release of 3trong {
vortices. Lofquist (1980) measured instantanecus values of T (t)
under such conditions. Figure 2.4 shows some of his results and we -1
see that the behaviour is completely different from that of a simple

harmonic or from that of sin (wt - ¢) |sin (wt - $)| which has

—
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Au_(t)

E‘i& 2.3: Time variations of the bed shear stress t(0,t)
for rough turbulent flow over relatively small roughness elements
r/a = ,008, From Jonsson and Carlsen.
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Fi& 2.4:
r/a = 0.5.
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A=31'8cm, a=24cm

OV B

5-57s
4-55s
3-7ls
313s
2-86s

ﬂ

sShear stress variation over fully developed ripples,
The free flow u_(t) varies as sin wt.
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VELOCITY

. AMPLITUDE

Figure 2.5: The velocity amplitude d(z) oscillates around the free
flow value am because the deficit u_-u has the form of a wave, pro-

pagating away from the bed.
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been assumed in several "theoretical" studies.

Another typical feature of oscillatory boundary layers is the
"over;hoot" near the bed, which comes about because the velocity
deficit d_(t) - u(z,t) has the nature of a damped wave which
alternatingly adds to and subtracts from the total amplitude u(z).
See Figure 2.5.

The above mentioned main periodic properties of the oscillatory
boundary layers have been studied in great detail by Kalkanis (1957
and 1964) , Kamphuis (1975) and Jonsson and Carlsen (1976) on the
experimental side and by Kajura (1968) and Jonsson (1980) on the
theoretical or speculative side. Their work is useful for sediment
transport studies because they provide predictive formulae for bed
shear strasses and boundary layer thicknesses. Those early experimental
studies were not however concerned with the details of the turbulence
or the vortex motion. Nevertheless, the latter are very important
for the understanding of sediment entrainment processes. The
formation and strength of lee vortices over large ripples was studied
and described by Tunsdall and Imman (1975), who found that the
vortices formed twice every period just about the time of velocity
extremes in either direction and that the order of magnituda of
the maximun velocities in the vortices was aw.

The turbulence (or velocity fluctuation) intensities over ripples
in purely oscillatory flow was studied by Nakato et al (1977) and
MacDonald (1977). All of their measurements show that the turbulence
intensity as well as the sediment concentrations decay exponentially

away from the bed

c(z) = coe"/ Ly (2.9)

-
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Fiqure 2.6: Distributions of vertical velocity fluctuations, vm

and time averagad sediment concentrations ¢ from MacDonald (1977),
Both are exponentially distributed with very similar length scales
Zv and. ZS‘ The msasuraments were taken over a circular swing moving

through still water, T = 63, ¢ = 0.27m, w = 0,015n/s. Y 9
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PLEE 2.7: Time averaged suspended sediment concentrationg ¢ from ® :

ato et. al. (1977), measured over natural ripples in an oscillating
water tunnel., T = 1.88, ¢ = .075m, 4 = , l4mm.
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Fiqure 2.8: Vertical velocity fluctuations Y ems from Nakato et. al. (1977},

measured over natural ripples and over the same ripples solidified by glue.
We wee that the presence of loose sand enhancesg Vons by a factor 2, all

other things being equal. Same flow conditions as in Figure 2.7.

.k




:(‘ Voms(® = V(@ o %y (2.10)

and the vertical length scales are very similar. See Figures 2.6
u! and 2.7. This is a very important observation because it shows
that sand and turbulent water spread away from the bed by very

similar mechanisms irrespective of the fact that sand has a finite

settling velocity, which the turbulent water has not. This is
possible because of the way in which sand grains travel in vortex
flow. We shall study this in one of the following sections.

Nakato et al's measurements show one more interesting thing
about the turbulence intensity over ripples. They show that the
intensity is increased by the presence of moving sand, all other
things being equal. This is surprising and so far unexplained,
but it is consistant with the fact that flat beds of loose sand
offer much more resistance to oscillatory flow than flat beds of
fixed sand grains (see Figure 2.8), and also with the fact that
Bagnold (1946) measured no energy dissipation factors larger than
0.24 over large sharp crested ripples in clear water, while

Carstens et al (1969) and Lofquist (1980) observed values in excess

of 0.30 in sediment laden water.

QUANTITATIVE DESCRIPTION OF BOUNDARY LAYERS
We shall now try to give a mathematical description of the flow ’
in the wave boundary layer that is,within four or five ripple heights

or a few hundred grain diameters from the bed.

We assume that the velocity outside the boundary layer is uniform

—eeend
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in space and varies as a simple harmonic with time
h u, = u/(t) = awcoswt (2.11)
1

In order to simplify the mathematical treatment, it is convenient to

use the complex formalism

u (6) = awe'** (2.12)

The complex number aw euﬂt moves around a circle with radius aw and

angular velocity w while the real part aw cos wt which corresponds
to the physical velocity oscillates between aw and -aw on the real
axigs, and the imaginary part i aw sin wt oscillates between the
corresponding values on the imaginary axis, see Figure 2.9.

The equation of motion is

. L3 _ 12
7t p 9dz p dx (2-13)

where p is the pressure. This equation is valid both outside and
within the boundary layer but outside the boundary layer there are,
by dafinition.no shear stresses in a purely oscillatory flow. We

have therefore

- i

This expression for the pressure gradient is valid ingside the boundary

layer as well if the pressure digtribution is hydrastatic. That is,
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Fiqure 2.9: The complex velocity amemt has constant modulus

ay and moves around a circle with angular velocity w. The real
part aw cos wt which represents the physical velocity os- 4
cillates between aw and =-qu. ]
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if vertical accelerations in the boundary layer are small compared

to gravity. In that case equation (2.13) can be written

3 1 9T

o (u°° u) = 5 3z (2.15)
It is convenient now to write the velocity deficit u-~-u in the
form

(u,—u) = aw D (z,t) (2.16)

where the non dimensional D(z,t) shown in Figqure 2.10,is a complex

function which must be equal to eLMt at the boundary where the velacity

vanishes
u0,) = 0 + D(O,&) = &% (2.17)

At infinity the deficit is of course zero so we also have

D(z,t) =+ 0 farz =+ = (2.18}

The deficit function D(z,t) takes a particularly simple form when
the bed is smooth and the flow is laminar. For laminar flow the 4

shear stress is proportional to the velocity gradient

T = pVZT (2.19) t

where vis the kinematic viscosity of water, so equation (2.15) can




wl(z,t)

-quw
-awi
Figure 2.10: The complex velccity deficit awD(z,t) gives the

local velocity a different phase as well as the different am-
plitude from the free flow u_(t).
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!
.‘ be written
o laD(z,t)] = - 2 (o -auw(z,t)]
3¢ (z.t) S 3z (ov 5= [u = z,8)] ) (2.20)
which reduces to
a

We solve this equation by separation of the variables, z and t.
First we notice that the velocity deficit D(z,t) must be pericdic

in time like u_(t) so we assume the following form

D(z,£) = PD_ (z) e WE (2.22)
T n
which we insert into (2.21) and get
twd, = v 3%, (2.23)
3z3
This has the solution
D (2) - A e inw/v z + Ba inw/v 2z (2.24) b
n n n
Now since Dn must decrease with increasing z we must have
An = 0 for alln {2.25)
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v which leaves us with
!
@ .
ulz,t) = u (8) -awliD (z2) e* (2.26)
1 0
- miwt - aw g 8 e-/:an/v b3 e1'.mm:
1 n (2.27)

Q = mzwt - aw 3; B it (2.28)
which gives

81 = 1 (2.29)

Bn. = 0 for n =1 (2.30)
so for laminar flow over a smooth wall we have

D(z,t) = n1<z)e‘“’t a o YWV z lut (2.31)
and

a(z,t) = aw [1- e VIOV Z Jlut (2.32)

(]

Although laminar flow over a smooth bed is a rather special case,
unlikely to occur in nature, the solution (2.31) for this case shows
most of the general properties of oscillatory boundary layers. ®

—
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If wa write (2.32) in the form

aze) = (- D] awe™* (2.33)
we can see how Dz (z) determines the local amplitude and phase relative
to the free flow.

We see that when 131 (z) is a real, negative number, the velocity
is in phase with u, (t) and the amplitude is larger than aw. That
is, there are alevations where the velocities get larger than those
of the free flow.

Remembering the form of Dx'

-Yiw/v z e—v’wlzv' (1+i)z

D:. (z) = e (2.34)
or

D (2) = VWV 2 [cos Y072y z =~ isin Yw/2v z] (2.35)
we see that this occurs for

\/ET-\;z = pT , p = 1,3,5... (2.386)

Figure 2.11a & b show the position of D 2z) and of 1-D(z) in the
complex plane. Figure 2.1lc¢ shows the position of u(z,t) in the
complex plane and Figure 2.11d shows the variation of the velocity
amplitude U(z) with the non dimensional elevation, zvw/2V.

The general picture of the velocity variation is the same for




Fi
flow over a smooth wall.

b:

, | -
towt—__ (c) 5? Z-V"z (d)
1 44+
TT 34 x\
3 U'(f) 2+ /X
|, T _—" up
aw aw

2.1l: Velocity variations with elevation in oscillatory laminar

The deficit function D(z,t) moves along a logarthmic spiral starting
at 1 and approaching 0 as z increases., Numbers on the curves refer
to the non dimensicnal elevation vi/2vz,

Corresponding variation of 1-Dj (2) which is the ratio between
u(z,t) and u_(t) see equation (2.33).

In the simplc case of laminar flow over a smooth wall where u(z,t)
is simple harmonic (u(z,t) = aw(l-D]_(z))eJ-‘”t) ' can construct
u(z,t) geometrically by using the circle from fiqu:e 2,9 and. the
spiral of figqure 2.11b),

The variation of the velocity amplitude U(z) a aw|l1-Dj(z)| with
elavation.




turbulent flow with small roughness to semi excursion ratios
(r/a £ 0.1) as shown by Jonsson (1980). Again the path of Dl(z)
in the complex plane is a spiral which starts at 1 for z = 0
and approaches zero quickly as z grows. The expression (2.34)
shows that for laminar flow over a smooth boundary, the complex

logarithm of Dl(z) is a particularly simple function of z:

laDp = =(1+i Ya/2v z (2.37)
and that the angle Arg (D ) and the logarithm of the modulus ln lDzl

are identical:
Arg (D) = 1a lnll = -/u/2V z (2.38)

Kalkanis® (1964) measurements show that for turbulent flow aver

a smooth wall the relation is
Arg ®) = 1l.21n ID;I (2.39)

and both increase as z°’¢? approximately. Saee Figure 2.12, For flaw
over two dimensional roughness the pattern is different again.
Pigure 2.13 shows experimental data from Kalkanis (1964), where the
bed roughness was made up by half cylinders. Figure 2.14 shows data
from Jonsson and Carlsen (1976) who worked with considerably larger
Reynolds numbers than Kalkanis, and with a different type of two
dimensional roughness elements.

The data plotted in Figures 2,12 through 2,14 show some variations

in behavicur, however a general feature is that 1In 1)1 behaves very
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similarly and that both Arg(D ) and J.nID1 l can be determined by one power

function throughout the whole experimental range. This is interest-
ing because all of the theoretical (or speculative) models, eg.
Kajiura (1968) and Jonsson (1980) work with two or more layers where
the behaviour of Dl is expected to be different.

We shall not however,go deeper into the study of the details
of u (z,t) at the moment. Instead we will consider another
measurable feature of the boundary layer, namely the bed shear
stress T (O0,t), and show how the empirical information on T can
be used to predict vertical length scales in the boundary layer.
This is important because we need the vertical length scales far
prediction of suspended sediment distributions and the only detailed
empirical information about the boundary layer over natural sand
beds (Carstens ot. al. 1969 and Lofquist 1980) are obtained by friction
or energy dissipation measurements, without detailed velocity mesasure-
ments.

We start again with the equation of motion

Ehs :
Iz (2.15)

ol

;]
3¢ (4= u) = -

which we integrate with respect to z and get

2
t

o 8

(G- u) dz = (T(0,8) = T(=,0)] (2.40)

The term T(%,t) can be neglected since the shear stresses vanish

outside the boundary layer, so we have
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9
at

o 8

(@ -u) dz = %T(O.t) (2.41)

which shows that the instantaneous bed shear stress is proportional
to the total acceleration deficit.
Since both the velocity deficit u_- u and the bed shear stress

T(0,t) must be periodic with period T we may write both as a Fourier

expansion
2 inwt
us=u = awii'Dn(z)e (2.42)
2 inwt
T(0,8) = p(am)zgcne (2.43)

After introduction of these and cancellation of common factors, the

integrated equation of motion, (2.4l), becomes

inw S Dn(Z)dz =  awC (2.44)

We are particularly interestad in the fundamental mode (n = 1) for

which we get
- -
ifD (zdz = ac (2.45)
o 1 1
The integral
-}
A = i /D (z)dz (2.46)
1 o 1
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igs the complex displacement thickness of the fundamental mode of the
velocity, so equation .45) enables us to determine a vertical
length scale for the boundary layer if we know the bed shear stress
and vice versa.

We shall illustrate this by looking once more at the special

case of smooth laminar flow where we have found

D (2 oYY 2 (2.34)
for which
-]
A = i[D (z)dz = AVwe (2.47)
1 o 1
and :hus from (2.45):
c1 = Jivials (2.48)
so tha bed shear stress in smooth laminar flow is given by
T (0) = o (aw? /iviaTa & (2.49) R

The fact that the argqument of c1 is ®/4 means that the bed ghear ]
stress leads the free flow u_ = aw exp {iwt] by m/4 or 45 degrees.
The result (2.49) could of course also have been obtained from the
definition (2.19) together with (2.234).
Several authors, starting with Jonsson (1966) describe the bed

shear stress in terms of the wave friction factor fw defined by

Py

g
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T = ip fw (aw) 2 (2.50)

Normally fw will include contributions from the higher harmonics

(equation 2.43)

- -]
rE o= Max{Z c emt} (2.51)

and there is no simple relation batween fw and cl. However for

smooth laminar flow where only cl is non-zero we have

te = lc:1 | (2.52)
and thus
£, = 2/ (2.53)

While (2.52) only holds for smooth laminar flow we can find a similar

relation for the energy dissipation coefficient: fe, which holds

as long as the free flow is simple harmonic (u_(t) = gw exp [iwt]).
The average rate of energy dissipation per unit area over one

period is

E = u.(t) TO,t) (2.54)

see eg, Kajiura (1968). Since u_(t) is assumed simple harmonic, only
the fundamental mode of the shear stress will contribuce to the

average
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L 2 = me{awe™t}refow:c et} (2.55)

1
(]

t p(aw)3 Re (Cl) (2.56)

The traditional way of describing the energy dissipation is in terms

of the energy dissipation factor fe, defined by

2
E = 7P fe (aw) 3 . (2.57)

which is related to c1 by

£, = 3%' Re{cl} (2.58).

As mentioned above, most of the existing empirical data on oscillatory
boundary layers over natural sand beds consist of friction or energy
digsipation measurements, so we can predict fe or RB'{CL} reasonably
well using those data.

In order to utilize the same data for the prediction of vertical
length scales in the boundary layer, we now lock for one which is
directly related to f_or Re {cl} . Equation (2.45) shows that what

we are looking for is

- -]
8 = Redi S n1 (z) dz} (2.59)
o

which is related to c1 by

5, = ane{cl} (2.60)

P S\
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and to £ via (2.58)
§ = 2 £ 4 (2.61)
1 3r Q *

PREDICTION OF £ , £ and §
e w 1

Both the wave friction factor and the energy dissipation factor
will in general depend on the flow Reynolds number, azw/v, as well
as on the roughness to semi excursion ration, r/a; but when the
flow is rough turbulent, as is the case under field conditions we
can reglect the Reynclds number dependence. The hydrodynamic conditions
of most wave flume experiments are in the region of transition between
laminar and turbulent flow, see Jonsson (1966). For such conditions
there is no empirical data (known to the author) about friction factors
over natural sand beds. The following derivations are therefore re~
stricted to rough turbulent flow conditions. '

The wave friction factor fw and the energy dissipation factor
t; ara theoretically different and may indeed take very different values
under some conditions (Figure 2.15). The differences are however,
usually small compared to the scatter ir: rhe empirical data. There-
fore it is not really worth while to distinquish between te and tw
for predictive purposes.

In the following we will make use of data from Kamphuis (1975)
who measured shear stresses, and thus £w, over fixed sand beds, from
Carstens et. al. (1969) who measursd energy dissipation (= fe)
over natural sand beds, and from Lofquist (1980) who measured both,
over natural rippled sand beds. The differences between fe and fw
are illustrated by lLofquist's data in Figqure 2.15, Only two experiments

show a significant deviation corresponding to a particularly peaked
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Fiqure 2.15: Comparison of measured values of £, and £,
from Lofquist (1980. We see that £, and £,
are generally nearly equal. The few extreme
deviations stem from experiments where T (t)
has a pronounced, narrow peak.

variation of T(t). The particular experimental conditions that lead
to such behaviour are as yet unknown, but they may become clear with

the progression of Lofquist’s work.

¢ Prediction of £ o for rough turbulent oscillatory flows involves

two steps, namesly, estimations of the hydraulic roughness, r, of the
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*(, bed and determination of fe £rom

i exp [5.213 (;:-)‘1" - 5.977] fori-
P £ - (2.62)

0.30 for = > .63

A
.
[+)]
w

Equation (2.62) which corresponds to the flow model, suggested by
Jonsson and Carlsen (1976) is only one of several semi empirical
formulae of the upper limit of 0.3 is somewhat arbitrary. It is
also doubtful whether all of the underlying physical assumptions,
such as the existence of an overlap layer (a layer where the shear
stress is proportional to the distance from the bed and the velocity

gradient) are met by the flow over large natural sand ripples. We

will, however, use equation (2.62) indiscriminately with all the
experimental data from Carstens et al (1969) and Lofquist (1980) )
and not claim that the resulting predictive formulae are anything
but empirical.

The bed roughness, r, depends on the bed form geometry, sand
grain size and on the motion of sandgrains near the sand-water-
interface., The simplest case is that of the flat bed with no sedi-

ment motion. Kamphuis (1975) measured friction factors under such

’
conditions. Fiqure 2,16 shows that his results are well predicted ]
by equation 2.62) with

1

»

r = 2.5d (2.63) 1
|
>




5
i J
F 40 - 4
\
1
]
i
L( T L R A S e a8 @ | T LN s an e p R T ™y - d
t 5 b °
Jo ,
o2k ¢ Rough turbulent flow N -
oE 4
b - R 4
- FF FFF :
L. -
8 43,r+120d j
02 43 11254 )
I 0
-Otf 0 Komphuis, Fixed bed -
- F Carstens etal, Loase sand \03
[ 7 ]
L 1 4 1 1 1111 __l Il [ G Y i 1 3 1 1 4]
IQ 20 40 100 200 400 1000 2000 4000 10000

Figure 2.16: Friction factors measured over flat beds of fixed
and loose sand. The moving sand over a loose bed
will increase the roughness by one or two orders
of magnitude, depending on the intangity of the
sediment motion.

When the sand is allowed to move, the friction is increased
very considerably, see Figure 2.16. Grant and Madsen (1982) suggested

that the roughness contribution from moving sand be given by

g

= 160 8 8" - 0.7 /F;>2 (2.64)

which is based on the mechanics of sand saltation in air. It is
reasonable to expect r to be a function of the skin friction Shields
paramster 8', However, the form of (2.64) seems not to work too well
for the data of Carstens et, al. (1969), see Figure 2.17. The
expression (2.64) varies essentially as e-, where as the data indicate

a slower growth, more like /' for 8' > 0.l.
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Figure 2.17: Observed roughness (via equation 2.62) for
flat beds of lcose sand. Measurements by
Carstens et, al. (1969).

when the bed is covered by ripples, these will contribute to
the roughness as well. Grant and Madsen argue that as a first
approximation, this contribution should be proportiocnal to the
ripple height n and the steepness n/\

The equation
r = gn%/A + 190 /8' - 0.054 (2.65)

provides a good fit to all the exparimental data from Carstens et.
al. (1969) and Lofquist (1980). See Figure 2.18.
The skin friction Shields parameter 6' expresses the ratio

between the moving shear force (~ td?) and the stabilizing gravity

force (~ pg (s - 1) d%). It may be estimated by

LY :; (aw) ?
(2.66) »

8 ————m———
(s=1l)g & 1
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.Figure 2.18: Predicted (eq. 2.65) and observed (via eq. 2.62)
values of r/a for the energy dissipation measurements of Carstens
et. al. (1969) A: rippled bed, d = .,19mm. B: rippled bed, d =
.30mm. C: rippled bed, d = .5%9mm. F: flat bed, d = .30mm and from
Lofquist (1980), L: rippled bed, d = .55mm. The straight line
corresponds to perfect agreement between prediction and observation.
The corresponding f, values will be in closer agreement because £o
varies slowly with z/a.

where f; is calculated from (2.62) using the roughness of a flat

bed of fixed grains: r = 2.5d, s is the relative density of
the sand and g is the acceleration of gravity.
For prediction of the ripple gecmetry under field conditions,

one may use

n/A = 0.342 - 0.34 /8" for 8 < 1 (2.67)

. J
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-1

. (aw)?
ve o= (m) (2.68)

as suggested by Nielsen (198l1). When 8' > 1, the ripple height

should be taken as zero.

TURBULENCE STRUCTURE OF WAVE BOUNDARY LAYERS
The turbulence strusture of oscillafory boundary layers can
be observed in different ways. Indirectly by detexrminations of the

addy viscosity vT from velocity measurements

3

(u =-u) dz
vy = % - i — o (2.69)
P35z 3z

as done by Horikawa and Watanabe (1968), Lundgren (1972), Jonsson
and Carlsen (1976), or by direct measurement of the vertical velocity

fluctuations (vrms) as done by Nakato et. al. (1977), MacDonald (1977),

Kemp and Simons (1982) and Du Toit and Sleath (198l1).

Local eddy viscosities determined by (2.69) taking T (2,t) and ]
u (z,t) as the real physical.quantitias show a strong variation
with tiem, which is at first sight quite astonishing. It behaves
like -tan (wt), and tends to minus and plus indinity on either »
side of two vertical asymptotes during each wave cycle, see Figure
2.19. The asymptotes are of coarse at the phases where the

velocity gradient is zero. Now the eddy viscosity is normally ®
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- interpretated as the product of a typical turbuluent velocity and a

typical length

F vy = VL, (2.70) ]

It is not physically meaningful however, to interpret the infinite

[' or negative valuass of V_ as a result of the negative velocity -

T
or length scales. The alternative is to interpret VT as a complex
number which has a constant modulus
vl = w8 (2.71)

and an arqument ¢, which is equal to the phase difference between
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Figure 2.13: Eddy viscosities from Horikawa and Watanabe (1968), ob- |

tained as instantaneous ratios between shear stress and velocity
gradients. The vertical assympthotes are at the phases where the
velocity gradient is zero.
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L( shear stess and velocity gradient. If both the shear stress
T (2,t) and the velocity gradient %% vary as simple harmonics
with time we may describe them by the real parts of the following

complex functions.

& g—‘;‘- =  gi(z) &t (2.72)

i(wt + ¢)

T = t(z) e (2.73
where U is the local velocity amplitude and the prime denotes
differentiation with respect to z and T(z) is the local shear
stess amplitude. The corresponding complex eddy viscosity is
/0 . X2 i¢
Yp T Ga pu(z) © (2.74)
3z
which is a complex comstant (for fixed z) with modulua
- T(2) : ’
|V, o (5 (2.75)
1
and argqument ¢.
»
In contrast, an apparently time dependant eddy viscosity results ©
if we take the ratio of the real parts of (2.72) and (2.73):
Ra{f (z) el(m * ¢)} ’
B 1at (2.76) ;
one {u' (z) oi“t} ]
. [
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T(2) cos {(wt + ¢)
P u'(2) cos wt (2.77)
T(z) .
oz [cos ¢ = sin ¢ tan wt] (2.78)

which describes the curves shown in Figure 2.19.

The fact that the apparent eddy viscosities measured by Horikawa
and Watanabe approach the asymptotes from the left throuch negative
values means that sin ¢ is positive (see equation 2.78) and thus that
the argument & of the complex eddy viscosity is positive. For the
experiments of Jonsson and Carlsen (1976), ¢ is always less than about
S degrees and mostly positive, but for flow over fully developed sand
ripples it might be larger and more variable due to the strong
vortices which may cause a gsubstantial momentum transfer (= shear
stress) even when the velocity gradieant is zero.

Lundgren (1972) derived the magnitude I\a,r(z)l from the measure-
ments subsequently published by Jonsson and Carlsen (1976) and re-
commended the following formula for prediction of IVTI .

Ku, z

= (2.79)
1+1.34 " LT s-expfé-]

vl
where the boundarxy layer thickness, §, is defined as the lowest
elevation where the velocity amplitude equals that of the free flow
(C(8) = aqu). Following (2.79) Ile will increase linearly with z
for z <<§ and decrease exponentially with z for z >> §. Figqure 2.20

shows a somswhat differsnt expression




v = (2.80)

which uses the displacement length §, for scaling, because it is
predictable on the basis of Carstens et.al's and Lofquist's energy
dissipation measurements over natural sand beds.

Figure 2.20 also shows measured vertical velocity fluctuations,
from Nakato et. al. and MacDonald. We see that V.oms decays ex-
ponentially like [v,rl for z 2 §, but at a somewhat slower rate:
e-z/4.561

v » 0.9 a

s . for z 2 §, (2.81)

For z § §,, Vems is nearly constant at least half way down to the

bottom of the ripple trough (z = -n).

v = 0.65 u, from /2 € z % 61 (2.82)

If the involved experimants are comparable in spite of their very
differsnt Reynolds numbers and r/q values we may obtain an estimate

of the length scale I, by dividing the above expressicns for Iv,rl

19l

v v
rms

(2.83)

The result, shown in Figure 2.20,should not however,be taken as more
than an indication of the magnitude and variation of Zv. Experiments

whers both T, g—: and v are measured are clearly needed for a deeper

ms
understanding of this phenomenon.
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Figure 2.20.: Turbulence structure of oscillatory boundary layers.

Laft: Vertical velocity fluctuations measursd by Macdonald (e), over
artificial roughness, made up by half cylinders with diameter .03m;
a= 282m, T = 6s, r = 0.015m, and by Nakato et. al. (»x: over ripple
crest, os over trough) over natural ripples, @ = .075m, T = l.8s,

d = 0,14mm.

Center: Inferred turbulence length scale (eq. 2.83).

Right: I\) l from measurements by Jonsson and Carlsen, derived by
harmonic analysis and equation (2.75). TEST I: g = 2.85m , T = 8,39s,
r=0.023m. TEST Il: @ = 1.79m, T = 7.20s, r = 0.062m.
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WAVE-CURRENT BOUNDARY LAYERS.

The water motion in the surf zone normally involves oscillatory
components of very different periods, from the order of one second
for the harmonics and incoming waves to several hours for currents
that are forced by the tides. The ability of these components to
penetrate to the bottom and contribute to the motion of the large
near bed sediment concentrations is highly variable. The short
period oscillations develop thin boundary layers and the long period
oscillations develop thick boundary layers. The thickness § of an

oscillatory boundary layer is proportional to the square root of the
period:

§ ~ /7 Vo (2.84)

where T is the period and Vo is the typical eddy viscosity. This
means that if the boundary layer related to a ten second swell wave
is 5 centimetres thick, then the surf beat current with period 30
saconds will have a boundary layer 15 centimetres thick and a tidal
current with period 12 hrs will have a boundary lgyer thickness of
about 10 metres. So under normal surf zone conditions with depth of
the order 2 metyes, the wave and surf beat boundary layers are thin
compared to the depth while the tidal current has a boundary layer
thickness much larger than the water depth.
The Figures 2.21 and 2.22 show two examples of surf zone

currents. Both were measured in the trough behind a well developed

bar where the depth over the bar crest was about half a metre and
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LONGSHORE VELOCITY PROFILE . MAY, 1982
EASTERN BEACH,LAKES ENTRANCE,GIPPSLAND.

A 10 SEC FILTER.SAMPLED EVERY 6 SECS.
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Figure 2.22: Vertical profile of time-averaged longshore current

velocity, as recordad within the trough of Eastern Beach in a suc-
cession of runs. The position of the lowest flow meter relative to
the ripples is shown. h = 1.1d4m, T = 8.65s, H = 0,39,

n = 0.08m. rms
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the maximum depth in the trough about 2 metres. For both the shore
parallel current and the shore normal one, we see that the mean
(obtained by averaging over about 20 minutes) varies considerably over
the depth. The shorenormal mean current is segregated with onshore
motion at the top and offshore motion near the bed; while the long-
shore current shows the usual monotonous increase towards the sur-
face. The wave and surf beat oscillations however,are unchanged
right down to the lowest flow meter.

The shape of the longshore current profiles in Figure 2.22 are
remarkable in that the wvelocity gradients between 7 and 22 centimetres
are much smaller than those betweean 22 and 100 centimetres. This is
because the waves cause a vast increage in the eddy viscosities in
the lower layer. These eddy viscosities are visualized by the en-
trained sand in the lee vortices shed by the ripples. The particular
measurements shown in figure 2.22Z have been discussed in great detail
by Wright et. al. (1982).

Datailed mean current profiles from under a combination of
waves and currents are rare and the laboratory measurements, e.g.
Brevik and Aas, (1978) and Kemp and Simons (1982) are all performed
with the current parallel to the wave propagation. However,all the
laboratozry msasurements and the field measurements of Cacchioneand
Drake (1982) show that the steady current profile is logarithmic
above the wave boundary layer while the velocity gradients inside
the boundary layer. are-suppressed by the extra turbulence created
by the waves. The resulting appearance of the current profile is
{llustrated in Figure 2.23 where we have assumed a particularly

simple eddy viscosity distribution, which was suggested by

T




(2) @@(1=-2/h) Ve = A2 (1-2/h)

(¢) MEAN LONGSHORE CURRENT (d) MEAN LONGSHORE CURRENT

Figure 2.23: Characteristics of the mean current profile in the pre-
sence of waves, strong enough to dominate the near bed turbulence struc-
ture.

a: The time averaged shear stress is linearly distributed and may be
auumed constant for z <l if I <«nh,

b: The eddy viscosity distribution is parabolic for z > I and \) is
a constant for z < L.

c: The u(z) distribution is logarithmic for z > l. With no waves but
the same u o+ the profile would have the same shape (same du/3z)
but be sh:.fted to the right.

d: Same u(z) profile in the usual semi lagarithmic plot where the
logarithmic part becomes a straight line.
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Christoffersen 1980,
Vo =V for 2 £ 1
(2.85)
Ve = Ku,z(l-z/h) for z 2 1
The parabolic part, used for z > . is the usual expression
for a steady flow eddy vigcosity, K being von Karman's constant
(v 0.4) and u, being the time averaged friction velocity defined
by
g, = /MO (2.86)

where T(z) is the time averagad shear stress. The distribution of
T(z) must be linear and we neglect wind shear stress (T(h) = 0) so

we have

T(z) = T(O) (1L - z/h) (2.87)

or in terms of the friction velocity

T(z) = pud (1 - z/h) (2.88)

when the distributions of shear stresses and eddy viscosities are
known, we get the velocity gradients 3u/3z from the definition of

VTS
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T 5z (2.89)

With the expressions (2.85) and (2.88) this yields

Ei (1L - z/h)

du

— = for z < 1 (2.90)
3z v, -

g:z‘. - = 2 forz > 1 (2.91)

We can find u(z) for z < . by integrating (2.90) and using

a(0) = 0:
=2
- Uy 1 2 < 1
u(z) - v—w- (z = 35 2 ) for z < {(2.92)

The velocity above z = [ is found by integrating (2.91)

[

z) = — 1a (3 forz> 1 (2.93)
3 zy

Z, represents the constant of integration and is equal to the level
where the extrapolation of (2.93) intercepts the z axis, see Figure

2.23c and 2.23d. The value of z, can be determined by matching the

two expressions (2.92) and (2.93) at 2z = [, wWe find

ku,l

z, = [ exp(- (1~ %)] (2.94)

v
W




or for I << h -9

ku,l

AV
w

z, = lexpl[- ] (2.95)
Cacchoine and Drake (1982) found z; = 4.8 cm under field conditionsg
and Kemp and Simons (1982) found z, values between 1.3 and 1.9 milli-
metres under 1 second waves with aw increasing from 0.06 to 0.12m/s,
and a depth averaged current of 0.184m/s. The bed roughness elements
were triangular wooden strips of height 5 millimetres, and the 2z
intexcspt z,, for steady current alone was 0.84 millimetres.
Experimental determination of \JT is difficult but Kemp and
Simons found that the assumption of U'r being a constant in the lower
layer was quite well justified under their . mperimental conditions
where aw was of the order 0.3 to 0.7 of the depth averaged mesan
current,
Brevik and Aas (1980) performed similar experiments, only with
a stronger mean current relative to aw and with sinusoidal ripples
that would have been less efficient vortex makers than the triangles
used by Kemp and Simons. Their velocity profiles werxe logarithmic
in the inner layer which indicatas a linearly increasing Vp as agssumed

by Grant and Madsen (1979).

The limited experimental evidence seems thus to indicate that the |
ripple eddy viscosity model (2.85) applies when the boundary layer is R
dominated by the waves,while a different model like the cne of Grant
and Madsen (1979) must be applied when the current dominates. Visual 1

observation of bed forms can eagily reveal which one is dominant "1
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at a given location. 1If the bed is flat or covered by symmetrical
ripples, it is most likely that the waves are dominating; but if
the bed is covered by asymmetrical dunes like in rip currents, the

current must be dominating.
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3. THE MOTION OF SUSPENDED PARTICLES

Since the main topic of the present report is suspended sediment we

shall study the small scale motion of such particles in some detail.

We do that in temms of an analytical solution for the equation
of motion of a suspended particle in an accelerated non uniform flow
field. This solution treats the effacts of gravity and those of the
fluid accelerations separately, which is a major advantage because
it enables a step wise analytical treatment of the problem which is
easier to follow physically than numerical models that take all

steps at once.

Wave boundary layers are dominated by vortices and therefore
we pay special attention to this kind of flow structure. However
the resulting formulae are quite general and apply to any flow as
long as the fluid accelerations are reasonably small compared to

the acceleration of gravity.
SEDIMENT MOTION IN VORTEX FLOW, QUALITATIVELY
For kinematic as well as for dynamic analysis of suspended

sediment motion, it is convenient to split the sediment particle

velocity -‘:p into three parts, as shown in Figure 3.1
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Tix,z,t)

—
w

U,

-,
Tp(x,2,1) vix,z,i

Figure 3.1: The sediment velocity up ig gplit into three parts:
-
u

P

-> -> - -> - ->
=3 +w+v, and v is treated as a perturbation to u + w.

-> -» - -

up(x,z,t) = u(x,z,t) + w +v(ix,2z,t) (3.

where '\; is the water velocity, w is the still water settling
velocity and '\'r' is due to the accelerations of the flow (see
Figure 3.1). In most practical situations the fluid accelerations

are much smaller than the acceleration of gravity, g, so we have

- d‘

vl = IFse < <1 (3.2)
and can use

(3.3)

e+
+
<4

>
u 3
p

as an approximation for the sediment particle velocity. Let us

see what that leads to in vortex flow.

-4
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Consider a forced vortex with the velocity field
x -z
u(z) = Q < ) (3.4)

which is that of a rigid body rotating with angular velocity Q.
Applying equation (3.3) we find

-> ~ -> -> -2

llp ~ a + W = Q(x - W/Q) (3.5)
w = (0,-w)). This shows that a sediment particle will move along
some circle with centre (w/Q,0) (See Figure 3.2). Tooby et. al.
(1977) showed experimentally that small particles do in fact follow
these circular paths very closely and only very slowly spiral away

from them. We shall study this spiralling process in detail later.

The interesting implication of these approximatly closed
paths is that the Lagrangian msan velocity for the sediment particles
-> -> - - ->
is approximately 0 and not w as cne would find from up = g +w,
assuming that P is random turbulence with average 3 This emphasizes
the importance of considering the flow structure in the context of

sediment entrainment.

The fact that the settling velocity is partly eliminated in
a vortax flow field has been touched upon by Reizes (1977) who
found it in a numerical study. He concluded that the sediment par-
ticle must spend more time in the upward moving parts of the flow
than in the downward moving parts. This is indeed the cagse; the

sediment path sketched in Figqure.3.2 lies completed in the "upward
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r N
a Sediment path
1 L’
Water particle path
Figure 3.2: Sediment particle with gettling velocity w moving in a

forcad vortex with velocity field . The particle paths corres-

ponding to ; + ; are circles and thus the lagrangian mean of the
sediment particle velocity will be zero.

moving” part of the vortex. For buoyant particles or air bubbles
the center of the "sediment path" would lie on the negative x-axis
and thus they would spend the majority of the time within downward

moving fluid.

The described trapping mechanism will work for all sand grains

with settling velocity smaller than the maximum velocity in the vortex.

The next questions to be asked is whether the trapping is a
feature of the rather unnatural, forced vortsx only. The answer
is no for the following reason : In general, the velocity field

of a two dimensional vortex can be written

A




v

-z

( 3 = QR o+ 29 (75 (3.6)
b4 X

and the first approximation to the sediment velocity is then

B= Bed o2 arat e+ Sy (3.7)
For the coJaponents upx and upz of this we have

upx(x, - 2) = -upx(x,z) (3.8)
and

upz(x, -z) = upz(x,z) (3.9)

This symmetry means that any particle path that crosses the x-axis
twice must be closed since, due to the symmetry, a particle which
has travelled along the curve P,;P, must travel back to P; via the
image of PP, (see Figure 3.3). Hence closed sediment paths are a

general feature of vortex flow,

A fair model of many natural vortices is the Rankine vortex

in which the velocity field is given by

M iR (“/R) (3.10)
b 4 1+ (x/R? + (z/R)? x/R
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Figure 3.3: In a vortex, where the flow £1ald has the form given

by equation (3.6), any particle path given by u -3+ v must be
closed, if it crosses the x-axis twice,
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In this vortex a sand grain with settling velocity w can be at

rest at the two sinqular points in Figqure 3.5:

t

(/2w + J(®/2w - I, 0), where a + w = O. The circle

shown, which is given by

2 2 Q 2
x QR £ R
(E - E—) (E) (E) - 1 (3.11)

contains all points with upz = 0. Sand grains will move upward
(t:l.pz > 0) in the interior and downward (u.}?z < 0) outside the

circle.

Figure 3.5 also shows the sediment particle paths corresponding
to .l:p = E + ;. Some of these are closed and could thus keep sand
graing trapped. Trapping is only possible if the settling velocity is

less than the maximum upward water velocity. That is if w < QRr/2.

The equation of the sediment path through (xg3, 0) is

x
z?2 = -p? - x®* + (R® + x3) exp [% %:- - ?o] (3.12)

Now, it: could be argued that since the paths are closed,
sediment particles are no more likely to get onto them than to get
off. And hence the trapping mechanism is not going to be effactive.
However, the situation in practics is that the sediment gets into
the vortex during its formation. This process is easy to observe

with the vortices behind ripples and dunes.
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- nﬁ f/
/+(z/ﬁ)‘m/m‘ x/R
& s 4
w
-2 | 2 3 5 xR
--l
0] . * * * () .
Figure 3.5: Particle paths corresponding to up = 3 + w in a Rankine

vortex. In the inner region where |u| is proporticnal to the dis-
tance from the origin, we get curves that are very similar to the
circles in the forced vortex (Figure 3.2).

QUANTITATIVE APPROACH

Consider a particle with diameter d and relative density s,
moving in a liquid with velocity ;(x,z,t) under the action of

gravity. The equation of motion is:

->

v 3 C ac!
-3 ig\l_ _tii - - Db = — i oy
dt " sat T3 a&emy) 73 (9pul (W e g (3.13)
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The first term on the right-hand side represents the pressure
gradients in the flow. The second expresses the influenc: of
the hydrodynamic masgs which is CM/s times the mass of the
particle. The third term is due to the drag forxrce on the par-
ticle, and cl': is the instantaneous drag coefficient which is

a function of the instantaneous Reynolds number.

———)
[u-u ld

R = 5 (3.14)

The validity of using this instantaneous drag coefficient
cl': was verified by Ho (1964), who used it for numerical cal-

culaticng. In the following we use the approximation

[u=u | =Y - =Y
w D w D

where CD is the drag coefficient corresponding to the

terminate settling velocity through still water. The exponent

Y is thus defined by

Yy = - 3 R (3.16)
IR = wd/V

In the laminar case, where Stoke's law is valid we get
Yy = 1 and in the turbulent areas where C:D is practically in-

dependent of IR we get ¥ = O, See Figure 3.6.
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Figure 3.6: The variation of the drag coefficient CD with

the grain-Reynold's number : wd/V. Aftar Navntoft (1968)
—
The Basset term, which yields a drag effect when |u-upl
changes magnitude rapidly, has been neglected because
— -3 ->
[a~a] = [w+v]
P
is esgentially constant (= w) under the assumption
d-h
qu < <1
=/ 9
which holds for most practical cases. From the definition of CD
T .3 1
(s~1) pg 3 d .-2-

we get

(2.17)

(3.18)

(3.19)
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d (s~ wz
Now we introduce
->- -> - -
up(x,z,t) =  u(x,z,t) +w + v(x,z,t)

into the equation of motion with

au Ju
I " 3¢t u*Vu
and
a a.b -> >
v v
at T o3e t (e
then we get
et -
g{- + ;-Vu + veVu =
&opds i‘-i(-ifr'-") - =c (I"w[ Y |wrv| (e + 2
s at s dt v 43d D w wv| fwey
The drag term is simplified by equation (3.20), and we
introduce

So we get the following simplified equation of motion
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av 1 1
v > . L el
3t + —1+CM/S weVu + __1+Cr/s veUu =
du —> 1oy — -
- ?:- + = @Y ) -3 (3.25)
wz-'Y

To assess the relative magnitude of the terms we bring the equation

on dimensionless form by the following transformations

ho >
U = ww (3.26)
-> -
v = Vw (3.27)
- -
W = ww (3.28)
|
T = Qt (3.29)
X = X/R (3.30)
Z = X/R (3.31)

wWhere { is a typical angular velocity of the flow and R a

characteristic length. This leads to:

d_‘; w/R > > w/GR - -
Tt Tcys We%a + Tic/s v-Vu =

- -
a8 — 1oy
<F * o | W= - (3.32)

and in texms of the vector components with the drag term expanded

dvx - w/SR atJx . w/QR v 33_:5 . v at:'x -
at 1+CM/s a2 1+CM/9 X 23X z 92

du
X
- 3 ¢k [Vx - Ay, e ] (3.33)
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]
1- ¥, . _W/AR %Y, . WAR v 9, . v a_U_z. -
4Tt l+Ct{s 32 1+C‘4/s x 9X zZ 32
: duz g 2_3x+xz 2 l=y .2
-0 -d-'l'- + o (Z-Y)Vz + T VZ - T Vx... ] (3.34)

We omit terms of the order of magnitude |V|? and rearrange

dav au 3u
.—x + H \'4 + W/QR x v + -—x v J =
ar wil x 1.+C!(s EX3 x F} z

du au

- /AR x
< 3 * /s 9z (3.35)
av 39U U
z w/QR z z -
= v @ ﬂ% V2 * +C\/s [ X 'x T 3z Vz]
du 3T
- =2 4 w/ R z (3.36)

ar W?W

In most practical cases w will be a few centimetres per second or
less and R will be a centimeter or more, so the second term of the
left hand side will dominata completely over the third, which may thus

be neglected, The resulting equations on dimensional form are

t M w x — 4at + 1+C}(s Pz (3.37)
dvz ag du.z v Buz ’ 1
* v @eng v, = 8 Tt Teys 73z (3.38)
Y
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when the velocity field is steady and uniform, the driving

terms disappear and the solutions are

= - 29 (e
v () v, (t,) exp [ 2 (¢ c,,):] (3.39)
v () = v_(t) exp [-(z-yy%i (t-:°)1 (3.40)

which shows that deviations from

-~ -+ -
up = 1 +w (3.3)

decay with a time scale of E% which is for most natural sediments
less than 10™° seconds.

This corresponds well with the results of Jenkin's (1973) who found
numarically that a sand particle released in still water will only
travel a distance comparable to its own diameter, before it has ob-

tained its terminal settling velocity.

Note that for a sand grain moving in air the situation is
very different because the time scale % is at least one order of

magnitude bigger in that case and so are the typical velocities.

In an accelerated. flow field, deviations froem (3.3) will be
very small compared to ; bacaugse of the large damping factor ;5-
(see equation 3.37 and 3.38). So equation (3.3) can be expected to
give a good first approximation to the sand motion in a flow field

-
with moderate accelerations, (I%“E-I < <gq).
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SIMPLE EXAMPLE

To gain a basic understanding of the acceleration effects,
let us lock at the very simple example of a small grain (y=1)

moving in a forced vortex. The velocity field is given by

- X -z

u(z) a  Q x) (3.4)
and

Trw o= QU (3.5)

%)
x~w/Q

Equation (3.5) corresponds to motion along any circle which centre

(w/R,0) and angular velocity ). See Pigure 3.2.

For our small grain with ysl equations (3.37 and 3.38) yield:

2y

a > d f-Rz w ) -z 1
+ -wg v - - &- (m) + l—@ E ( Qx) (3.41)
We introduce

(x) - (R cos Gt + w/Q (3.42)

R sin it

which corresponds to the same steady circular motion as (3.5), and

£ind




K 73
- cos (it -wil/ (l+CM/s)
-
X, BT . %R + (3.43)
dt w
sin Qt 0
The first temrm on the right hand side is a centrifugal acceleration

which results in a rotating velocity -‘;a’

cog (Qt - 'ran-l %‘2;)
- Q%R 1

1/1*_(%)2 sin (Qt - Tan Eq-)

In most practical cases, we will have w{/ag < < 1 and thus we see
. . 2 d;; > .
that v_ is nearly proportion to Q’R/g = 'EE' /g and that v, is

R
parallel to R except for the small angle 'ran-l :ﬂ—g (see Figure 3.7).

The second term on the right-hand side of (3.43) is the
Coriolis acceleration which gives a steady drift ;s towards the left
for s <1 and to the right for s <1 (see Fiqure 3.7).

~w3Q

"(s=L)g
v = (3.45)

The effect of v is to make the grain spiral out (for

w > 0) slowly. To egtimate the time scale for this process we put

- . B cos (it
VR = T w (sin Qt) (3.46) L

which assumes
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Figure 3.7: The density difference causes a centrifugal effact

;R that will make heavy (s > 1) particles spiral out and light
(3 <1l) particles spiral in. The Coriolis effect leads to a
steady drift to the left for s> 1, to the right for s <l. Note

that the size of ;R and ;s are vastly exaggrated, compared to
-> -~
u and w.

815

and write ; in the form

wiQ/g
T e T v . 2 & L
v R ] -1 s=-1 0

(3.48)
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The last, steady termm is not contributing to the spiralling

process in average over a revolution so the spiralling can be

modelled by
dR Q2 '
3t = —9'_ wR (3.49)

(a+w is perpendicular to R) which has the solution

2
R(L) = R, exp [ &q_‘"_ (t-to)] (3.50)

showing that the time scale of the spiralling process is

t = —i— (3.51)
S mz

This time scale will normally be sevaeral seconds in which time

the particle is travelling with the vortex with effective settling

velocity zero.

The solution given by (3.44) and (3.45) is valid for
particles that are so small that Stokes law applies, that is

Y = 1. The general solution is:

Q%rw -1 w2Q
vx cos (it - Tan B) = TS_"I_)E (3.52)
g"1+6"
2
v, = b sin(Qt - 'ran-l[B/(Z-Y)J) (3,53,
(2=y)% + g2

where 8 = wil/ag <€ 1.




76

SECOND ORDER EFFECTS

Due to the non linearity (for Yy > 0) of the drag term
in equation (3.13), a sediment particle will settle slower through
an accelerated or non uniform flow field than through still water.
This effect can be analyzed by considering secand order terms
(0(V?)) in solutions of equations (3.33) and (3.34). Nielsen
(1979) studied this phenomenon for a homogenous, vertically oscillating
flow, (u, = Rlcos{it), and found that the reduction in settling
velocity is of the ordar of magnitude [Ri?/g]? w which is in most
practical cases very small compared to w. This analytical solution
was shown to be. in good agreement with measurements and numerical

calculationg, carried out by Ho (1964).
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4. FIELD DATA

THE SEDIMENT SAMPLER

Over the twenty month period from October 1980 to July 1982,
the Coastal Studies Unit has collected 71 detailed profiles of time
averaged suspended sediment concentrations c(z), complete with hydro-

dynamic data and bed sediment samples.

The sediment sampler which was designed by Peter Nielsen and
constructed by Graham Lloyd is probably the most simple instrument
cne can think of for this kind of task. It has no electrical or
mechanical, moving parts and is therefore very rugged and dependable.
The sand-water-mixture is collected by suction and the driving pres-
sure difference is provided by connecting the sample jars, that sit

on the sea bed, to a common air outlet above the water.

Figure 4.1: The sediment sampler.
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The sampler is designed to sample a vertical array of simultaneous ]

time averaged sediment concentrations, c(z).

The maximum distance between the top and bottom intakes is

.55m, and the seven intakes can be placed with different intervals.
The interval between the two bottom intakes, where the concentration
gradients are largest is normally 4 centimetres and the intervals
between the higher intakes vary from 10 to 15 centimetres. The in-
terval between. the bed and the bottom intake is adjusted once the

sampler has been placed in the sampling position.

The intake nozzels are stainless steel pipes, 15 centimetres
long and with inner and outer diameters of 3 and 6 millimetres
regspectively. The intakes are connected to the sample jars by

transparent plastic hose with 5 millipetre inner diameter.

Glass jars of 2.2 litre capacity are used as sample jars. This
size is sufficient for obtaining measurable amounts of sand (2 .05
grammes) at concentrations as small as 10”° by volume. This capacity
is normally only required outside the surfzone. For measurements in
areas with breaking waves and/or strong net currents it is recommended

to use smaller jars, which will be easier to handle.

Because the jars must be placed on the bed and remain stable,
while still full of air, a considerable mooring weight is needed.
The seven 2.2 litre jars are kept in place by a steel plate, weighing

approximately 32 kilogrammes.

Each sample jar has a water/sediment intake and an airx outlet.
The air outlets are connected to a common outlet which ends at the 1
top of the glass fibre mast. The magt also helps tc locate the

samplar, Note that it is not necessary for the main outlet to be out




L( of the water. However,to provide sufficient sampling speed it should
be at least one metre above the top of the jars, and the main out-

let must be kept from filling with water before the sampling begins.

The distance from the intakes to the nearest part of the sample
jars is 1.25m, and the intakes are .65m from the nearest part of the
sampler that touches the bed. This assures a minimum of disturbance
of the bed and the flow near the intakes, when the sampler is oriented
properly relative to the flow. That is, the bottles are placed down-
stream from the intakes if a net current is present and the horizontal

symmetry axis of the sampler is aligned along the wave crests.

The most common working depth until now has been 1.5m, so the
driving pressure difference, which is that between the jar stoppers
and tha end of the air outlet, is 0.l13 atmospheres. Under such con-
ditions the jars £ill up in about 3.5 minutes, which corresponds to
an intake velocity of l.5m/s. This is so much larger than tha typical
gattling velocity (Vv .04m/s) of suspended sand that one can expect all
grains to be caught. On the other hand, the flow velocities induced
by the suction are only about .03 m/s at positions one centimetre
away from the centre of the intake, so the suction itself causes very
little disturbance to the main flow field, where the typical velocity

magnitude is 0.5m/s.

TRANSDUCER AND FLOW METER CHARACTERISTICS.

The hydraulic data referred to in this paper are obtained from ]
analysis of strip charts.on which water wvelocities and wave heights
ware recorded during the sediment sampling process, The response

time of the chart recorder for the relevant output values is about ° 1

L ————
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0.2 seconds and thus negligible compared to the time scale of
natural waves, and the scaling parameter of the chart recorder is

incorporated in the calibration of the instruments.

Like the chart recorder, the pressure transducers respond
immediately and it is therefore assumed that the gain is the same
for oscillatory input with the frequency of natural waves as it is
for static pressures, After a days sampling work, the transducer-
chart-recorder system is calibrated hydrostatically before dis-
connection in order to achieve maximum accuracy (¥ .0lm) on
detarmination of mean water level and wave heights. The calibration

arrangements. is shown in Figure 4.2.

The flow meters have been calibrated by moving them through
still water attached to a heavy pendulum with periods between 2.5
and 5.5 seconds. This calibration shows that the instrument res-
ponses are linear for velocity amplitudes betweeen 0.1 and 2 m/s

and that the frequency response can be described by

1

F(w) v e (4.1)
This means that the following relation exists between measured
velocities um and real velocities u:
dnm
'77F + um = u (4.2)
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Figqure 4.2: Instrument pod with flowmeters and pre-
ssure transducer. The transducer is shown with the
calibration device. Different hydrostatic pressure

is given by the position of the water surface in the
hose.

The equations (4.1) and (4.2) provide two means of correcting the
velocity measurements. Equation (4.1) can be used for correcting

spectra, and (4.2) can be used for direct correction of time series.




82

In the following analysis, the flow meter data are only
used to determine wave period and time average velocities G and
¥ in the shore normal and longshore directions respectively,
while the oscillatory velocity amplitude aw is obtained from the

pressure records via linearwave theory.

EXPERIMENTAL PROCEDURE, DETERMINATION OF c(z).

The sampling sites are chosen so that the hydraulic conditions
and the bed topography are as stationary and well defined as
possible. When such a location has been found the pod with flow
meters and the pressure transducer is installed. The standard
setup hag two ducted impellor flow metsrs and one pressure trans-
ducer. The shore normal flow meter is placed .2m above the bed
and the longshore one at .3m. The pressure transducer is normally

placed at about .S5m above the bed.

The sampler is placed near the instrument pod so that the
velocity msasurements should represent the flow at the sampling
spot and at the same time far enocugh away (and up stream) such that the

sampler and the pod do not disturb each other.

Then the position of the intakes is carefully adjusted, and
the elevation of the lowest intake above thae bed is measured. If
the bed is rippled, the intakes are always placed over a ripple

crest.

When everything is ready, a clamp which has been blocking
the intake and outlet hoses is removed, the sampling starts. When

the jars are full, the intake elevation is measured again and a sand
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sample is taken from the bed near the intakeg. If the bed is rippled,
height and length of these are measured. After this the sampler is
brought ashore where the total volume of the samples is noted and the
sand is filtered out. The sand is dried and weighed later in the

laboratory so that the concentration can be worked out from:

mass of sand
(density of sand) x (total volume)

(2] ]

(4.3)

DETERMINATION. OF THE SEDIMENT PARAMETERS: d, w and V

The bottom sample from each run is sieved and the average dia-

meter is found from

Im. 4,
i-i

d = -ri (4.4)

where m, and di. are mass and average diameter of each sieving fraction.

The average settling velocity is similarly found from

Im.w,
i 4

w = E;—‘ (4.5)

The variation coefficient V of the settling velocity is defined

v = var{w}/@? (4.6)

and the variance is found from
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varfw} = o=
where N is the number of sieves. The settling welocity Wy for the
different sieve fractions is detarmined by settling tube experi-
mants for each experiment location. This is necessary because the
relation between grain size (d) and settling velocity (w) varies a
great deal between beaches, sae Figure 4.3. This variability is

caugsed by differences in abundance and geometry of shell fragments
in the bed material. These shell fragments can have quite large

sieving diameters while their settling velocity is much smaller

than that of the equivalent quartz sphere.

(wZ - W?) 4.7
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Figqure 4.3: The relation between sieving grain size and settling velo-
city for two of the test locations. This relation varies considerably
from beach to beach due to variations in grain geometry and mineral con-
positien.
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DETERMINATION OF h, T, H_, U and V.

Considering the scatter of the concentration measurements, it
was concluded that a representation of the hydraulic conditions by the
water depth h, the significant wave height Hs" the average period T and
the average flow velocities U and V would be datailed enouch. The wave
period is defined by the time interval between successive zero down
crossings of the shore normal velocity u(t). This definition is chosen
bacause the reversal of the near bed velocity is essential for the be-

haviour of the wave boundary layer.

The significant wave height Bs is defined as the average of
the highest third of the zero down crossing wave heights. That is,the
height from the bottom of the wave trough to the top of the following
crest. The water depth, h, and average flow velocities U and V are
normally found by running the pressure trangducer and flow meters in
100 second filter mode for about S5 minutes before and after the sampling.
From the basic parameters mentioned above and using linear wave theory
we derive tha semi excursion a:

H

a = - m:-zl’-h (4.8)
s T

and the velocity amplitude aw using w = 2m/T. The mobility aumber Y

is given by

(aw) ?
y = G-Dd (4.9)

where s is the relative density of the sand and g is the acceleration

due to . gravity.

™
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DETERMINATION OF € , L , € and £_ .
of "8’ "s sc

Concentration profiles for suspended sediment fall into two
categories. Exponential profiles are obtained from measurements over
large sharp crested ripples under non-breaking waves. mese profiles
are characterized by the two parametars C, and Zs’ which can be found

by an exponential curve fit:
c(z) = Co exp(-Z/Zs) (4.10)

where S determines the concentration magnitudes while the vertical

length scale

- -1
d ln ¢
- [

determines the rate of exponential decrease away from the bed. The

length scale I is equivalent to € /w where € is the so called dif-
fusivity. These exponential profiles are similar to those measured in
the laboratory by Horikawa and Watenabe (1967), Nakato et. al. (1977},

MacDonald (1977) and Nielsen (1979).

The above mentioned exponential profiles are restricted to
experimental locations where the waves are non breaking and the bed is
covered by well developed vortex ripples with long shore parallel crests

and heights in the interval

0.05ag¢ n ¢ 0.25¢ ‘ (4:12)
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| When the bed forms are different or the waves are breaking, v
we find different concentration profiles indicating a different entrain :
ment mechanism. These profiles are concave upward in the usual plots of
h 1n ¢ versus z. As pointed out by Nielsen (1979) such profiles are well ]
r repregentad by the expression
s L
- wh -l [’s 2z
Inc = 1n Co o ) tan T B (4.13)
B'S B
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Eiﬂ' ze 4.4: Equation 4.13 fitted to msasured c-values,
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which corresponds to a diffusion model with the diffusivity distribution
2y 2
ea(z) = € + es(h) (4.14)

via the one dimensiocnal, time averaged diffusion equation

de - (4.15)
Ea E; + wC = 0

€, is an apparent diffusivity because equation (4.14) assumes that all

suspended sand has the settling velocity w.

The best fit values of the three parameters in equation (4.13)

rewritten as
A - z
In & - al-a tan Qa Y (4.16)

are found by the least squares criterion

53— lnd - 1n 8% = 0, i=1,2,3 (4.17)
ay

by a generalized Newton iteration and the goodness of fit, rz, is de-

fined by

Cov {in &, 1n c}

r? = _-EE_*T—_{__T“
(Var ¢! var {ln &) (4.18)

If the bed material contains fracticns with different settling velocities

and if all grain sizes obey the diffusion equation
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e 4+ we = o0 (4.19)

where € is independent of grain size, the concentration of different
size fractions will decrease at different rates away from the bed
and the shape of the compound concentration profile will thus de-
pend on the distribution of settling velocities for the bed
material. This means that the apparent diffusivity ea' and es

in particular, which comes out of the cuxve fitting process, de~
pends on the w-distribution. We shall now show how this effect

can be eliminated from the observations.

In the following we assume that the time averaged concentrations
c(z,w) of sand with settling velocity w obey the one dimensional
diffusion equation on th.e form (4.19) which expresses that the
upward flux -e%zé equals the downward flux wC at any level. The

ganeral solution to (4.19) is
Szw) = C_ (W exp{-£ T 4z} (4.20)

wheze co (w) is the concentration of sand with settling velocity w
at z = 0. For completely homogenecus sand with w = w the con-
centration profile would be given by

z

c(z) = c, exp {~f.
Q

(4.21)

"
£)

dzl},w

YA

For convenience wa introduce
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z -
w
g = f T 4z, (4.22)
Q

so that (4.21) can be rewritten

Gz) = Ce 0 for wiw (4.23)

Natural sediments are not homogeneous and the variance of
settling velocity has a significant effect on the concentration
profiles, making the gradients larger near the bed and smaller
towards the surface.

If we introduce the non dimengional settling velocity

w'o= w/w (4.24)
and the density function £(w') defined by

£(w')dw’ = co(w)/co r 0 <w' < @ (4.25)
we get the following digtribution for the fraction with settling
velocity w

- L

Szw = c o™ Trwtraw (4.26)
and for the total concentration

- » ‘U

ctz) = ¢ [ &Y aw (4.27)

% o
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L( It was shown by Nielsen (1979) that the type of density function
is not critical as long as £(w') has the right variance V = V'ar(w)/x;2

and a mean value of 1. We choose a ['~distribution be-

caugse it fits natural w'’-distributions reasonably well (see

Figure 4.5) and also gives simple analytical results

/v _
f(w') = %/T%v_)_ exp (-w'/V)w'l/Vl (4.28)
Yt
I8 | TEST 8
Brosme , Nov. (980
w = 0-055 m/s
ol V =+ 0-268
0-5¢
i 2 ___ 2 - w'
0
oS i-Q -8 20 28
Fiqure 4.5: Natural distribution approximated by [-distribution.
Ingerting this into equation (4.27) we find the simple result:
/v
- 1
c(z) = C° (T:EV) (4.29)

under the assumption that € and thus 0 is independent of w'.
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The desired aim is to find a method for determining a
true € from a measured 'c'-profile ofnon homogeneous sediment. This
can be done in the following way. Equation (4.22) yields the

following relation between ¢ and the true diffusivity

w dg
T * = (4.30)
do
and can get = from (4.29):
c\ "V -
do ) d 1nc
c
and find
- V -
c -w
€ = (E;) T=e (4.32)
dz

Let us compare this trus diffusivity with the apparent one,
€ a’ which we would find by neglecting the variance of w. The apparent
diffusivity €, is found by applying (4.21) directly to the concen=-

trations of non homogeneous sediment which yields

-w

€, ™ S in & (4.33)
dz

and thus

- v

€ < .

: - (C—) (4.34)

a o

The result shows that the ratio between real and apparent
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-

diffusivities at a given level depends only on the measurable quantity

T -

E/Co and on the variation coefficient V, which is very convenient.

We see that the effect depends strongly on V as one would expect and

that the effect is negligible near the bed (where c = ).

The corrected surface diffusivity e is derived from (4.14)

and (4.34)
v
g(h)
€c ™ Ea(h) (———CO ) - &y (4.39)

[

€ = (€B+es) exp | - Shv tan-l -g {4.36)

sC / € ss'

ol
w




DESCRIPTION OF EXPERIMENT SITES

2 PALM BEACH

Experiments 1 and 2 were carried out at the southern end of
Palm Beach, on October 26, 1980. Palm Beach is the most northern
of Sydney's beaches, and on the day of the experiments it was in
an accreding state with shallow bars moving onshore. The bed was

covered with large ripples or megaripples.

CABLE BEACH, BROOME

Experiments 3 through 24 were performed on Cable Beach at Broome,
North Western Australia in November 1980. Cable Beach has a tidal
range of more than 9 metres, and most of the beach profile is flat,
without bars. Ripples are generally small or absent because the
sediment is very fine. Exceptions from this general pattern are some
areas near the neap high tide line where the sediment is coarse
(d 20.5 mm) dus to a large content of shell fragments. These areas
tend to develop ridge and runnel systems, and at high tide the bed
is covered by sharp czested vortex ripples. Experiments 9, 10 and 11
were performed over such ripples. The morphology and wave climate

are described in more detail in Wright et al (1982).

MEROO BEACH "
Experiments 25 through 35 were carried out at the southern end
of Meroo Beach approximately 8 kilometres south of Ulladulla, New
South Wales in February 198l1. The beach was in an intermediate stats
with rather confused bar topography. The bed forms were large vortex }

ripples or megaripples.

——————————————
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SEVEN MILE BEACH

Experiments 36 through 43 were carried out at the northern end
of Seven Mile Beach, south of Kiama, New South Wales in March 1981 '
and experiments 61 through 66 were done at the same location in
March 1982, The northern end of Seven Mile Beach has very fine
sand throughout and is exposed to the prevailing sea and swell from
the Southeast. The modal state of the beach is therefore the extreme
dissipative. Thz profile is flat, hed-forms are normally absent,

and the sand is very firmly packed (no foot prints).

EASTERN BEACH

Experiments 48 through 60 were carried out on Eagtern Beach at
Lakes Entrance, Victoria in May 198l1. At the time of the experiments
a well developed bar about a hundred metres from the shoreline was
moving towards the shore. The depths over the bar crest was less than
half a metre at low tide while the maximum depth in the trough was
about two metres. All suspension measursments were taken in the trough
at depths of approximately one metre. The bed was always covered by
well developed vortex ripples that showed no influence at all from the

sometimes strong longshore current which reversed with the tide.

WARRIWOCD BEACH

' Experiments 67, 68 and 69 were carried ocut in April 1982 at
Warriwood Beach, which is one of Sydney's northern beaches. The modal
state of the beach is intermediate because the sand is quite coarse
and the headlands at both ends give some protection. The suspension
measuremants were taken on the cuter slope of a shallow bar and the

bed was coversd by megaripples.
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WINDAWOPPA BEACH

Experiments 70 and 71 were carried out on Windawoppa Beach at
Hawk's Nest, fifty kilometres northeast of Newcastle, New South Wales
in July 1982. The beach was recovering after being severely eroded
by storm waves the preceding week. The topography was rather

confused and the bed was covered with megaripples at the test site.

PEARL BEACH

Experiments 44 through 47 were carried out at Pearl Beach, north
of Broken Bay near Sydney in March 1981. The measurements were taken
over the rippled bed about 10 matres seaward from the step of the
reflective beach. Since wave reflection is very significant for this
locacion, the hydrodynamic data for these experiments were derived
from the near bed water velocities rather than from the pressure

variation.




5. EMPIRICAL RESULTS

SEDIMENT DISTRIBUTIONS OVER VORTEX RIPPLES

Twenty eight of the experiments were parformed over well
developed vortex ripples (R), undesr non breaking waves.

The results show the same general picture as the laboratory
experiments of Horikawa and Watanabe (1967), Bijker et. al. (1976),
Nakato et. al. (1977), MacDonald (1977) and Nielsen (1979). That is,
the profiles are straight lines in the usual semi logarithmic plot,

(log ¢ versus z) , showing that c decays exponentially away from the

bed.
c(z) = co oxp(-z/zs) (4.10)
LJ L T 1 Ll | T T ) | 1 T L] L
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Figure S5.1: Four successive profiles measured over well developed

(n/a = .12) vortex ripples in a bar trough. The profiles are ex-
ponential with a vertical length scale approximately equal to the
ripple height n (= .08m).




The vertical length scale of this decay (Zs) is approximately
equal to the ripple height n, so the concentrations decay by a
factor 100 (~ e*5) over four to five ripple heights. Figure 5.1
shows the results of four successive runs from the bar trough in
Gippsland. Apart from the abovementioned exponential behaviour the
figure also shows the repeatability of the tests.

We can thus describe these concentration profiles by two
parameters co and Zs. Co determines the magnitude and Zs determines
the distribution. It was pointed out by Nielsen (1979) and it may
been gen in the data of Nakato et. al. in Figqure 5.2 that concentration
profilaes measured over the ripple trough are slightly different from
those over the crest. Both will be approximately exponential but C°
will be 1.5 times smaller over the trough than over the crast while
Zs will be the same factor larger, so that the total amount of

suspended material

fédz = Col‘ (5.1)

Q

is the same for all vertical sections. All the field measurements
of the present study and the laboratory experiments quoted in the
following were taken over the ripple crest.

In general we would expect Z' to be a function of the bed gecmetry,

-4

the boundary layer structure and the parameters that determine the
sand motion in the boundary layer flow.
When the bed is covered with sharp crested ripples, the

natural vertical length scale is the ripple height n.
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Figure 5.2: Tunnel data from Nakato et. al. (1977).

The time-mean concentration decreases faster over the ripple
crest than over the trough.

The boundary layer structure will depend on n/a and on the flow
Reynolds number aw/v.

The flow structure is dominated by the lee vortices and we

found in Chapter 3 that the behaviour of a sand grain in vortex
flow is determined by the grain Reynolds number wd/v and the
velocity ratio Ril/w. The observations of Tunsdall and Inman (1975) .
show that the velocity scale in the lee vortices is aw so we may g
replace RQ by aw.

In the present context it might also be relevant to consider . '
the ratio t’/'r between the spiralling time scale (equation 3.51)

and the wave period.

We would thus expect l' to be given by a relation of the form . ‘
z t *‘
2
s n ag*“w wd s aw
n = F a'’ v LTI ? ’ —w ) (5.2) 1
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The followingempirical considerations show that most of the
variation of Zs/n can be accounted for by aw/w in the case of fully
developed sharp crested ripples.

Figure 5.3 shows Zs/n as function of ts/T and we see that for all
the data where aquw/w is reasonably big (aw/w > 9) the variation is not
significant exceét for a few data points with ts/'r > 1. The points
that fall far below correspond to small values of aw/w ( < 7.5) which
indicates that for aw/w less than about 9 the vortex trapping
mechanism is less efficient. To calculate ts we have used equation
(3.51) and assumed that the velocity scale in the vortex is aw and
that the vortex radius is 0.5n. We thus find the angqular velocity Q

in the vortex to be

a 2n
Q = oS T (5.3)

and

t 2
T °  16mwa (5.4)

Experiments with extremaly large values of ts/'r will also
lead to unusually high values of Zs/n. Large values of ts/'r occur
when T and w are both small and n/q is large. In relative terms,
such conditions are characterized by small grain Reynolds numbers
(wd/v s 1) and small flow Reynolds numbers (a2w/v s 2000),

e.g. the experiments "H" and "N” in Figures 5.3 through 5.5.

L
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Figqure 5.3: The variation of lg/n with t /T is insignificant for
ts/'r <1, which includes all field observations. But the variation
with aw/w must be strong since all data with aw/w < 7.5 fall
significantly below the rest. Since the typical value of Zs/n is
1.4 = 1/1n2, we can derive the following zule of thumb:
The concentration dacreases by a factor two when the
elevation is increased by ome ripple height.

‘ The symbols used in FPigure 5.3 and the following are defined in Table
5.1. The field data are primarily described by the bed topography:
R for vortex ripples, T for small ripples with low steepness due to
‘ high shear stresses, F for flat beds and MR for megaripples. But
they may alternatively be described by the wave characteristics: N

for non breaking, S for spilling breakers or P for plunging breakers.
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Figure 5.4: The relative vertical suspension length scale, lg/n, as

function of the velocity ratio aw/w. l_/n grows with aw/w between 3

and 10 as the vortex trapping becomes morc efficient. 1 /n bacomas

constant for aw/w 2 10, probably because the ripples get more rounded. !
If the ripple "sharpness" is maintained as in MacDonalds experiments ]
(*), Zs/n may continue to grow.

when the ripple height is small (n/z < 0.0l) as for the data marked

(T) 7 /n will be large because ._ does not become substantially smaller 1
than ¥he total bed roughness. s )

Megaripples (MR) do not shed strong vortices, so the concentration

profiles do not scale on the magaripple height but on tlie flat bed )
roughness. )
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Figure 5.4 shows Zs/n versus qu/w. The main trend here is that
Zs/n increases with aw/w for 3 < aw/w < 10, indicating that the vortex
trapping mechanism gets more effective with increasing velocity
ratio. For aw/w > ZOLZS/n tends to decrease again, probably because
the ripples get more rounded and less efficient vortex makers. The
dots towards the upper right hand corner are measurements from
MacDonald (1977) who used solid half circular "ripples"” with just a
small amount of loose sand around. These wooden "ripples"™ will of
course maintain their shape and vortex making capability independent
of aw/w so that Zs/n can continue its upward trend. (The shown
"MacDonald data” all have a/n > 14. When @ is smaller (4.9 < a/n < 13)
it seems to restrict the increase of Zs/n somewhat) .

The data marked "T" represents conditions where the i:elative
ripple height (n/a) has decreased 3ue to increasing ¥ and 8%, and
becoms smaller than the equivalent flat-bed-roughness, r. Undi-
such conditions Zs/n is again large because Zs now scales on r.

The influence of t_/T on [A g/N is shown by the circled N-experiment
in Figure 5.4 but possibly also by the experiments of Nakato et. al.
which are marked I. Those experiments were performed with constant
aw/w and three different periods: 1.2, 1.8 and 2.4 seconds. They
show a considerable increase of Zs/n with T which may be due to the

related increase in ts/T ~ gT/w.
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Figure 5.5: Observed relative ripple heights from the present
field study and from some of the laboratory studies quoted. The
curve represents the trend of all available laboratory experiments
with quartz sand (Nielsen 198l1). The bed forms referred to as
megaripples have rounded crests and are not shedding vortices
periodically. Extreme valuas of n/a (>0.25) tond to occur for
small grain - and flow Reynolds numbers.
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GRAIN SIZE VARIATION WITH ELEVATION OVER VORTEX RIPPLES

The profiles measured in tests 57 through 60 are very similar
(see Figure 5.1), and it was thought reasonable to pool samples from
the same elevation to get amounts big enough for a sieving analysis.
The result of the sieving is shown in Table 5.2. The distributions
from the four highest elevations are so similar that they could not
be distinguished in a usual cumulative-distribution-plot. The
distributions from the lower levels differ somewhat more, mainly
with respect to the coarsest material (d > 0.5 mm), but the general
picture is that the typical grain size ( and settling velocity) varies
much less with elevation than a diffusion model would suggest.

If the entrainment process was diffusion with €(2) independent
of grain size and if settling velocities were [-distributed with
variation coefficient V at z° . Then, using the terminology
introduced in ~ection 4, we find that the mean settling velocity
will vary with z as |
;(zo)
l+oV

wiz) = (5.5)

where ¢ is the non dimensional elevation
z -
j w(zo)
g = ! e—(z)— dz (4.22)

Q

The variation corresponding to (5.5) with z, = 0.0l m, G(zo) = 0.053m/s,
V = 0.106 and € = 0.0043 m%/s is shown in Figure 5.6 together with the
observed values from Table 5.2. We see that the cbserved values are

much more constant than equation (5.5) suggests, which indicates that
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the distribution of individual size fractions are less dependent

of settling velocity than the diffusion model predicts

w
- -z (5.6)

Another way of illustrating this is by plotting concentration profiles
for individual size fractions and see whether they have different
slopes in accordance with (5.6). This has been done in Figure 5.7
and we see that the differences in slope, especially above z = 0.08m
are amuch smaller than predi.cted by (5.6). In fact all the slopes are
identical for z > 0.8, indicating that all grain sizes are distributed
alike, irrespective of settling velocity. The mechanism responsible
for this cannot be diffusion but must be a convective process where
the sand grains travel with the released lee vortices after being
trapped as sxplained in Chapter 3. The effect described above has
been noticad befors for example by Coleman (1970) who studied
concentration profiles for different sand sizes in steady flow.
Maintaining the diffusion terminology he concluded that big grains
experience a much larger diffusivity than small ones in the same flow.
It is more profitable however to discard the diffusion terminology when
the flow has a pronounced vortex structure, like over ripples and
behind dunes, and describe the concentration profile in terms of the

length scale

d lnc
Lz = E dz] (5.7

which is very similar to the corresponding length scale for vertical

velocity fluctuations
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] dlnv_ -t
{ 2 = |- (5.8)

as indicated by the measurements of MacDonald (1977) and Nakato
et. al. (1977), see Figures 2.6 through 2.8.

Grain size variation with the distance from the bed under

breaking waves was measured by Kana (1978) who found a more pronounced
variation in average grain size between 10 and 60 centimetres above
flat beds. This shows that the entrainment mechanism is different
outside the wave boundary layer, under breaking waves, and probably

more like diffusion.

CONCENTRATION PROFILES OVER FLAT BEDS

Flat beds of firmly packed sand ays common in the surf zone
of flat, dissipative beaches.

Under such conditions the concentration gradients are very larxge
near the bed. Typicaly the concentrations will decrease by an order
of magnitude over the lowest ten centimstres.

Figure 5.8 shows two profiles msasured under very similar
conditions at Seven Mile Beach, March 1982.

The suspended sand near a flat bed forms long stream parallel

clouds twice every period near the velocity extremum in either

direction; more dense under the stronger shoreward flow. These

streaky clouds break up when the flow reverses and soms of the sand
travels to slightly higher elevations with the turbulent water, but I
most of the sand will have settled out bafore the next velocity ]

extremum occurs and forms new clouds. ]

A
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Figure 5.8: Concentations measured over a flat bed under plunging
nﬁ"t‘xm—m. e curve is the result of the fitting procedure described

in connection with equation 4.13. C_ = 1.08 x 102, ¢_ = 1.86 x 10~° mi/s

e, =4.0x 10=% m%/s, r* = 0.954. B

The width and thickness of the clouds is normally 3-5 centimetres
under field conditions and results in vertical length scales of the
same magnitude near the bed.

The structure of the sand clouds looks var} gimilar to that of the
"gublayer streaks" in steady flow. See Cantwell (1981). The characteristic

Zs value of 3-5 centimetyas is approximately equal to the hydraulic

roughness, r given by equation (2.65) or about a hundred grain diametres.
The length scale will normally increase quite rapidly with distance
from the bed. Under breaking waves, the increase is due to mixing ]
induced by wave breaking and concentrations of the order of magnitude 1
10=* may extend all the way to the surface. Under non breaking waves
the steepening of the profiles occurs at much lower concentations (of
the order of 10~%) which are made up mainly by the very finest fractions ' }

of the bed material, see Figure 5.9.
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Figure $.9: Sediment concentrations over a flat bed under non
breaking waves. Under non breaking waves, the concentration magnitude
will drop to somewhere between 10~% and 10~5 before the profile gets

steeper.

Figure 5.10 shows Zs/a (= e5/wd) for all measurements carried
out over flat beds or megaripples.

We see that the near bed length scale Zs determined from the
curve fitting as eB/w, is generally about a hundred grain diameters
or of the same magnitude as the hydrau;ic roughness, r, of a loose
sand bed as derived from the friction measurements of Carslens et. al.

(1969) and Lofquist (1980)

r = 8n2/A» + 190 /' - 0.05' & (2.65)
which gives
r/d = 190 /@' - 0.05 (5.9)

for a flat bed.

e a A
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ﬂ% 5.10: The value of I4 near the flat bed is about a hundred
qr diametres or approximately equal to the hydraulic roughness

given by equation (2.65). There is a slight tendancy for plunging

breakers (P) to give larger near bed length scales than spilling :
breakers (S) indicating that the turbulence of a plunging breaker »
penetrates further towards the bed. - 4

The data in Figure 5.10 show no systematic trend and the

relation between [, and r may be expressed

Z’/r = 0,81 £ 0.50 (5.10)

{
[ ]
’
I
“———




o 115

The standard deviation is very large indeed and this is of

course partly due to the fact that the sampler is not really designed
for sampling over flat beds. There are too few intakes within the
lowest ten éentimtres, and it is very difficult to adjust and
measure the elevation of the lowest intake with sufficient accuracy.
There are however no other detailed measurements available at the
moment as far as the author knows.

One might have expected the appropriate length scale to be the
boundary layer thickness or the displacement thickness §; rather than
the roughness r, and indeed.ls/é 1 is typically of the order of
magnitudes one.

However Zs does not seem to grow with @ in the way §; does.

(For the relevant range of r/q we have §; ~ a"75 r°25). Figure 5.11
shows 13/61 versus a/4d for the same data as plotted in Figure 5.10.

The scatter is very large indeed, but we see the trend of

Zs/61 to dacrease with increading a/d, which probably means that

Zs is fairly independent of g while §; grows like a to a power

between 0.25 and 0.75. (For the dstermination of §;, see

equations 3.61, 2.62 and 2.65).
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Figqure 5.11: Relative near bed length scales, lg/5); as function of
a/d from measurements over flat beds or megaripples. The height
n of the megaripples is not included in the calculation of §;.
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CONCENTRATION PROFILES OVER MEGARIPPLES

When the bed forms are nicely regular like long crested vortex
ripples the suspended sediment pattern is correspondingly regular,
uniform in the longshore direction and periodic in the shore-normal
direction. It is however quite common to find different, more
irreqular bed forms like megaripples and the suspended sediment
pattern over them shows strong and complicated spatial and temporal
variability.

Megaripples are irreqular bedforms with typical heights of ten
to thirty centimetres and lengths of one to two metrss in the shore
normal direction. The crest lengths are of the same order of magni-
tude as the crest to crest length, so the pattern is three dimensional
and quite irregular.

The crests are very rounded compared to those of fully developed
vortex ripples and there is no periodic formation of lee vortices.
The suspension pattern is therefore in most pleaces rather like that
over a flat bted with sand entrained by turbulence bursts that form
long streaks parallel to the wave motion and reaching heights
comparable to the roughness length, r, of a flat sand bed. However
in some places and under some waves large sand fountains are formed
by strong vortices that are formed around the current maxima and
released by the following flow rsversal to travel upward carrying
suspended sand up to elevations as high as one or two metres above
the bed. Horizontal sections through the fountains will typically
hav; diameters of 0.3 to 0.5 metres,

Megaripples are often non stationary with a continually"

changing pattern so the distribution of active (in the sense of




fountain making) spots is variable and similarly a spot which is
at some time very active may in the matter of minutes become
inactive.

Figure 5.12 shows two concentration profiles (Run 70 and 71)
measured at the same location with half an hour interval. The bed
was covered by megaripples and the waves were spilling breakers.
Cbviously the sampler intakes were close to an active spot during

Run 71 and in a fairly inactive area during Run 70.
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Figure 5.12: 7Two concentration profiles measured under identical
wave conditions at the same location, over megaripples. The lavel
of activity has changed considerably due to the temporal variation
of the mesgaripple pattern.
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Figure 5.13 shows time series of shore normal velocity at
z = 0.20m together with instantaneous sediment concentrations
measured at z = 0.04m near the sampling location of the two S(z)
profiles shown in Figure 5.12. During the first three minutes of
the record, the detector was at a very active spot where strong
bursts of suspended sand were created by every second or third
wave and then decayed over a twenty to thirty second period.

Over the last 3 minutes nothing much happened in the way of
sdeiment suspension although the waves were unchanged. The active

spot had died or moved on.

<(004,1) BY VOLUME -

9 1 2 3 4 s § WINUTES

Figure 5.13: Simultaneous time series of shore normal velocities and
instantaneous sediment concentrations. For the first 3 minutes, the
arsa around the sediment detector was much more active than during
the last half of the record. There is no corresponding change in the
watsr motion, so the change must be due to changes in the megaripple
topography. The instantanecus concentrations were measured via gamma
radiation absorption by Alan Davison of the Australia Atomic Energy
Commission.
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The near bed sediment distribution over megaripples away from

the active spots is similar to that over a flat bed. The shape of the

upper part of the profiles is similar to that under breaking waves
over flat beds and the present data does not enable us to distinguish

the effects of breaking waves from those of sand fountains.

THE DIFFUSION APPROACH TO NEAR BED SEDIMENT DISTRIBUTIONS
- The classical approach to suspended sediment phenomena is the

gradient diffusion approach where the upward sediment flux is
3c

assumed proportional .to the concentration gradient 32

and to the
diffusivity €, which may be a function of z but should be essentially

independant of w and approximately equal to the eddy viscosity, v o

if diffuysion of sediment is physically analogous to diffusion of

momentum.

The distribution's dependence on w enters through the assumption

of local equilibrium between the upward flux ¢ %— and the downward

flux wc. This equilibrium is expressed by the time averaged

diffusion equation

we = 0 (4.19)

18

It should be noted here that Nakato et. al (1977) found that
there is no local equilibrium between time averaged upward and

downward fluxes over ripples. The net flux is upward over ripple
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crests and downward over the troughs. However the diffusion equation
may still be applied in a space averaged sense. That is if c is
defined as the average over a ripple length.

If the diffusivity is essentially the same as the eddy viscosity
it should be scaled by a typical velcoity v,, and a typical length

I, of the boundary layer:

;%— = const (5.11)

vV

Nielsen (1979) tested several relations of this type for the
case of rippled beds with negative conclusions. The diffusion model
does not apply over rippled beds because the dominating entrainment
mechanism is convection through the entire boundary layer thickness
of sand trapped in vortices. We have studied this process in
previocus sections.

The turbulence structure over flat beds is evidently different,
so it is not clear a priori whether the entrainment process is mainly
diffusion or convection. That is whether the distributions will be

determined by a diffusivity, given by the turbulence structure

€ * v (5.12)

leading to different length scales c¢/w for different grain sizes,
or the distributions of all grain sizes will have a common vertical

length 3cale, Zs' determined by the boundary layer structure.
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We have found in the previous section that a common length scale

namely the bed roughness applies pretty well:

— = 0.81 * 0.50 (5.10)

in accordance with a convection model.
However the scatter is very considerable and in fact a

di ffusion model, assuming

€
B

u,d)

=  constant (5.13)

does not fall through completely on the basis of the present data.
Figure 5.14 shows 53/‘1.51 versus w for the same megaripple - (MR)

and flat bed data (F) that were used in Figure 5.10. We see that the

typical magnitude of "35/“.51 is around 0.3 which we would expect in

view of Jonsson and Carlsen's eddy viscosity measurements that are

shown in Figqure 2.20. Howaever, there is a significant tendency for

the observed addy viscosities to increse with w. This is evidence

in favour of the convection process because the universal (= independent

of w) length scale Zs of the convaection model corresponds to ¢

B
being proportional to w:

€g = sz (5.14)

il
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Figure 5.14: Measured relative diffusivities for flat bed (F)
and megaripple (MR) data. The typical magnitude is 0.3 which
one would expect from Jonsson and Carlsen's eddy viscosity
neasurements; but the cbserved diffusivities increase with
w, which indicates that the entrainment process is really
convective.
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CONCENTRATION MAGNITURE

The concentration magnitude is determined by C o which is
defined as the time averaged concentration (by volume) at the
ripple crest level and it is determined experimentally by
extrapolation of the fitted profiles given by 4.10 or 4.13 to
the level z = 0.

It is natural to expect co to depend mainly on the ratio
between moving ~ (= shear stresg) and stabilizing forces on the
bed sediment particles.

This ratio is expressed by the Shields parameter

T
m = 0.5 fw‘# (5.15)

The form drag on ripples and other bedforms is unlikely to influence
the motion of individual grains so roughness dus to bed form geometry
i.e. the first term of equation 2.65, should not be included in the
calculation of the Shields paramester. The roughness due to moving
grains is mainly a function of 8' as we found in connection with (2.65)
80 any effect of moving-grain-roughness is automatically included if

we assume a relation of the following form

c, = P9 (5.16)
where
x 1, ,
8 = Sg-Da T (3.17)

and fw' is calculated as t. from (2.62) with r = 2,54,
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Figqure 5.15: C , measured over ripple crests, as function of 9' for
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all available lgboratory data. Different grain sizes follow the same 1
trend (M, N}, but experiments with longer periods tend to fall lower

than those with short periods (I). The results of Homma et. al. (1965)

fall consistently above the rest for unknown reasons.

]
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’( Figure 5.15 shows Co as function of 8' for all available
laboratory data. The concentrations measured by Homma et. al., (J),

are generally three to four times larger than the main line of the rest

which remains unexplained. They were measured by the same kind of
optical device as used by Nakato et. al. (I). The very different
grain diameters (0.082 - 0.55 mm) used by Nielsen (1979) follow the
same trend, so the variation of relative grain size (a/d4) is
properly accounted for. However there is a significant tendency
for data with longer periods or higher flow Reynolds numbers (a2w/v)
to fall below those with smaller Reynolds numbers. See for example
the data of Nakato et. al. that are marked "I". The three experi-
ments were carried out with the same sand and the same velocity
amplitude (aw) but with different periods: 1.2, 1.8, and 2.4 seconds
and correspondingly different Reynolds numbers: 1.4x10%, 2.1x10*, and
2.7x10%.

The power function

c, = 0.038%7 (5.18)

is found by log-log linear regression and redrawn in Figure 5.16

to illustrate the fact that all the field data fall significantly

below the main stream of the laboratory data. The field data Y
correspond to much longer periods than the laboratory data, typically
8 seconds as opposed to 2 seconds, and will thersfore have much larger
Reynolds numbers for the same 9'. The discrepancy between experiments
with different Reynolds numbers is caused by the way in which 8' is

calculated. The use of equation (2.62) assumes rough turbulent flow
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Pigqure 5.16: C_ versus 9' for field data. The trend is the same for
ripples, megariSples and flat beds (R, MR and F) but all field data
fall significantly below the line given by (5.18), which represents
the general trend of the laboratory data.
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conditions, while viscous effects are probably still quite important
in most of the laboratory experiments. The viscous contribution to the
friction factor may be roughly estimated by

2 -0.5
£ = 23w (2.53)

v

which we derived above for laminar flow over a smooth bed. This will
be considerably larger than the values derived from (2.62) for small
scale experiments and therefore the proper Shields parameter for the
laboratory experiments is larger than 6'. In Figure 5.17 the laboratory
data have been moved to the right, to closer agreemant with the field
data by including viscous effects in the friction factor and the

Shields parameter in the following way. For the friction factor we

use the combined formula

2 -5 22
- acw - a“w
£, fe + 2[—-“ ) exp{ 10 " ] (5.19)
and get the revised shields parameter
8, = 0.5¢fy (5.20)

The Reynolds numbers for field data range roughly between 105 and

105 so in their case @, is practically identical to 6'. The scatter
is still very large, especially towards the lower values of C:° and
unfortunately it is real. As mentioned in connection with Figure 5.12
the concentrations can be an order of magnitude different due to
details in the bed form topography under the same waves and with

the same bed sediment, so if we are looking at general relations
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The major devialions from the main trend are found for the
laboratory msasurements of Homma et. al (J) and for field
measurements over hard, flat beds at moderate values of the
Shields parameter (40, 41, 42 and 65).
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between Sheilds parameter and concentration magnitude we must expect
this kind of scatter for beds covered with irregular bed forms.

For flat beds and rippled beds with samples consistently taken
over the ripple crest, we might expect a somewhat smaller scatter
and that is generally what we find. However over some flat beds of
fine sand wa tend to find concentrations that are extremely small
compared to the general trend. Such concentrations were found in
experiments 40, 41, 42 and 65 at Seven Mile Beach. The fine sand
(d * 0.17 mm) was very firm to stand on, nearly like solid concrete,
the bed was completely flat and nearly no sediment motion occurred
although the Shields parameter was larger than 0.55, That is an oxder
of magnitude larger than the conventional critical value for the onset

of sediment motion (Oc s 0.05).
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INFLUENCE OF WAVE BREAKING ON CONCENTRATION PROFILES

The wave boundary layer turbulence decays very rapidly
with distance from the bed as described by Tunsdall and Inman
(1975) and measured by MacDonald (1977) and Nakato et. al. (1977),
see Pigure 2.19. The data support the following rough estimate

of the scale of turbulent velocities

~ -2/4.5 §
Vm ~ 0.9 u* (-} 1 (2.81)

This means that the suspended sediment distribution outside the
boundary layer (z 2 561) is likely to be determined by entrainment
and mixing due to sources such as wave breaking.

Different types of breaking waves are likely to generate mixing
of vastly different character and strength. Waves that plunge heavily
on shallow bars or on the step of steep beaches can form very strong
jets, that penetrate right through to the bed and thus introduce
very strong external turbulence into the boundary layer itself.

The jet is also able to inject large amounts of entrained air
into the boundary layer, and when this air rises, it generates large
localized, upward water velocities that act as very efficient elavators
for suspended sand. The magnitude of the vertical water velocities,
generated in this way can be estimated from the typical heights, Z,
reached by the water and sand dragged up by the escaping air.

It is not uncommon to see splashes of white or brownish water rise
about a metre above the local water level shortly after a wave has

plunged.
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Figure 5.18: Big waves (Hg = 1.5m) plunging on a shallow
bar. The arrow shows plumes of sandy water, dragged up
by escaping air.

]
1
Figure 5.19: Big waves plunging onto the step of a steep ®
reflective beach (Pearl Beach, North of Sydney). The jets 1
of water, thrown upwards by escaping air ara about one
matre high.
®
1
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The relation between starting velocity Vo and culmination

height Z is

v = Y292 (5.21)

so aven with a conservative estimate of Z = 0.5 m we find

v * 3w/ (5.22)

which is a hundred timas the typical sediment settling velocities.
These large velocities of course are concentrated around large escaping
air pockets and of short duration but they dominate the sand entrain-
ment in the areas around the plunge point. The dascribed process

may create some very strangelocking concentration profiles when the
rising plumes spread along the surface above areas with little
sediment motion. Then one may observe that the concentrations

increase toward the surface.

Mixing dus to spilling breakers and bores has a very different
character. The writer once observed the effect of spilling breakers in
a wave tank (T =1.7s, h =0.40m, H * 0.2 m, 4 « ).082 mm) at the
Institute of Hydrodynamics and Hydraulic Engineering (ISVA), Technical
University of Denmark, during the following experiment: At first
the waves were not breaking and the suspended sand formed a well defined
layer over the rippled bed, only a few centimetres thick. Then the
anmplitude of the wave generator was slightly increased so that the
waves began to break and passed over the test section as gently

spilling breakers, the wave height being practically unchanged.
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The suspension distribution was wichanged for four or
five wave periods after the onset of wave breaking. Then it changed
very rapidly and apparently reached a new equilibrium with con-
siderable concentrations throughout the water column. The transition
tock only about two wave periods (from a visual judgement).

When the wave maker was turned down again so that the waves
stopped breaking,the old equilibrium with clear water above a few
centimetres of dense suspension was reestablished in about ten wave
periods time.

The two above mentioned situations of the heavily plunging
wave and the gently spilling one are the extreemes with respect to
breaker introduced mixings;and their affects on the sediment distri-
bution in general and on the boundary layer in particular arxe pro-
bably very different.

The laboratory measurements shown in Figure 5.20 are from under
non breaking waves and spilling breakers of the same height. The
breaker turbulence has obviously changed the upper part of the
profile drasticaly; but the lower part, that is C, and Zs are
unchanged, so the concentration magnitude and the near bed vertical
length scale Zs are the sams under spilling breakers as under on
breaking waves. This tsndency is not contradicted by the field
measurements of the present study. See Figure 5.10,

None of the field experiments refarred here we carried out
under really heavily plunging waves, All the experiments marked
“P" for plunging in Figure 5.10 were performed on flat straight
beaches where the upwelling of sand with entrained air never be-
comes as well developed on shallow bars for example. Nevertheless

there is a tendency for the "P"-experiments to fall above the
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average in Figure 5.10 indicating some injection of breaker tur-
bulence into the Boundary layer.

A theoretical treatment of sediment dispersiocn due to wave
breaking does not seem possible at the moment although some in-
formation about the turbulence structure can be gained from such
studies as Miller (1976), Pereqrime and Svendsen (1979), Madsen
(1981) and Thompson (1982). Neither is it possible to derive
precise quantitative information concerning the upper part of the
concentration profiles on the basis of presently available data.
A detailed quantitative discription would require a comprehensive
laboratory study where such things as break point and breaker
type can be clearly defined. These are never constant nor well
defined in the field., It will also be necessary to start with very
uniform sediment, so that the effects of settling velocity varia-

bility are eliminatad in the first placs.
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Figqure 5.20: Concentrations measured under spilling breakers and non )
breaking waves of the_same height, from Nielsen (1979), h = 0.4m, 1
T=1l.73, H = 0.1%m, d = 0.082mm. The spilling does not change con-

centration magnitude or profile slope inside the boundary layer

(z £ 2em); but it changes the profile completely at higher elevations.




INFLUENCE OF CURRENTS ON CONCENTRATION PROFILES

In none of the field experiments of the present study did
the steady current influence the suspended sediment concentrations
significantly. That is, none of the data show a significant
tendency for Co to be larger or the distribution to be different
due to a stronger relative steady current.

The relative strength of the steady current is defined hare

v, = (2% + v¥)/(aw)? (5.23)

where the mean currvent components u and v are shore parallel and
shore normal respectively and u is generally measured O.2m above
the bed while v is measured at 0.3m.

The range of VR in the ixpc:imnts carried out over the
rippled bed in the bar trough at Eastern Beach, “ippsland was 0.02

to 0.19 with the steady current being predominantly shore parallel.

The strongest longshore current was 0.32m/s in Test 54, measured 0.25m

above the bed. The current veolocity at the surface was about 0.5m/s

which is a very considerable current to work in. Neverthelass the

ripples on the bed were apparently not affected by the current at all.

They were sharp crested, shore parallel and symmetrical, just like

under a pure wave motion. This shows that it takes a very strong

longshore current to change the bed form gecmetry, the boundary layer

structure or the sediment entrainment process over a rippled bed.

The wave boundary layer and bed forms seem to be somewhat
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:( more sensitive to shore normal currents like rip currents. From

visual obgservations it seems that even a weak rip current

(VR % 0.05) tends to change the bed forms into asymmetrical dunes
with somewhat larger length than vortex ripples and with nc vortex
shedding from the landward slope. Unforunately we did not suceed
in getting any concentraticn measurements from rip curvents. This
is of coarse due to the fact that rip currents are very difficult
to work in. The laboratory studies of Brevik and Aas (1980) and
Kemp and Simons (1982) have revealed important details about the
boundary layer under waves and a strong "“shore normal® current
over a solid rippled bed. But the response of a loose sand bed

to such flows is definitely worth a study as well.
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2
( SHORENORMAL SEDIMENT TRANSPORT

Prediction of sediment transport under waves and a current
is a very complicated matter and at present there is not model
in existence which is both theoretically based and in agreement
with experimental evidence.

As early as 1963, Inman and Bowen showed that the net
sediment transport under waves and a codirectional current will
just as often be against the net current as with it.

This means that no transport model by which the net trans-
port has the direction of the net flow will be in general agreement
with the empirical avidence.

More such evidence has since been obtained by many detailed
flume experiments at the Technical University in Delft; see van de
Graff (1980L All of these experiments as well as those of Bowen
and Inman were carried out over rippled beds, with relatively
weak currents.

The explanation for the tendency of the net transport direction

to be opposite to that of the strongest instantaneous current lies

in the way sand is entrained over ripples (see the illustrations

of Bijker et. al.1976): The sand that is picked up by the velocity

in say, the shoreward direction is trapped in the lee vortex and »
thus not effectively moved until the vortex is released by the ]
flow reversal and carried seaward by the following seaward current.

In this way the weaker offshors current carries larger con-

»
centrations which is likely to result in net seaward transport ]
becauss concentrations grow rapidly with the entraining velocity
(like u® or u®). The picture is of course different when the .

current becomes sO strong that the flow never reverses through :




most of the water column. Further complication is added by )

the fact that waves and steady currents have very diZferent
abilities to penetrate the lower layers where the concentrationsg
are largest. Recent laboratoxry studies by Brevik and aAas (1980) )
and Kemp and Simons (1982) give good details about the current
distributions under waves, over solid rippled beds, however it
must be borne in mind here that the bed forms in for example rip -
currents are very different from ripples and this may change
the turbulence structure and the current distribution.
For quantitative description of the sediment transport it
is appropriate to write both velocities and concentrations as
Fourier series
imwt}

ulz,t) = Re{g U (2) e (5.24)

c(z,t) = Rrelf c (z) &*™* (5.25)
¢ m }
since the whole process must be periodic. In general Um(z) and
Cm(z) are complex numbers of which the argument determines the
phase shift relative to the fundamental mode of the waves.
The net sediment flux through a vertical element dz at

elevation z is then
IQ,(zldz = Zlum(z)! lcm(nl cos ¢ dz (5.26)

where ¢ is the local phase shift between Um and Cm given by "1
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} ¢ = Aarg {Um(z)} - Arq{cm(z)} (5.27)

This dependence of the sediment "flux on local phase relations is

a central problem in non steady sediment transport modelling and
as yet there is not model which is capable of predicting these
phase relations on theoretical grounds.

The model presented by Nielsen et al. (1978) and Nielsen (1979)
predicts these phase relations as well as net sediment fluxes that
are in agreement with the Dutch measurements, with appropriate choice
of parameters. However, this model is based on the diffusion
equation, and as we found earlier in this section the entrainment

process aespecially over ripples is not a diffusion process.
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SHORE PARALLEL SEDIMENT TRANSPORT

In the direction perpendicular to the wave motion the
problem is not so complex because there are no oscillatory
velocity components (except for maybe pulsation of longshore

currents at surf beat frequency} so the total sediment flux

is simply
h - -
Q = [ v(z) c(z) dz (5.28)
[«

The evaluation of c(z) and V(z) is not straight forward
however. The concentration, c{(z) will in general be a function
of u and v as well as of aw although the dependence on u and v
seems to be rather weak and is in fact hidden in the scatter of
the presently available field data.

Our ability of predict the longshore current distribution
is also very limited. Two rather recent models for wave current
boundary layers are those of Grant and Madsen (1379) and
Christoffersen (1982). The first model assumes that the eddy
viscogity grows linearly both inside and outside the wave boundary

layer while the latter assumes a constant V_ in the boundary

T
layer. The second model is much simpler to work with and in fact
the measurements of Kemp and Simons (1982) show that under their

experimental conditions V_ is more like a constant than anything

T
else inside the wave boundary layer.

None of the two models considers the possibly vast im-
portance of the orientation of the vortices over rippled beds.

This orientation may however lead to very different eddy viscosities
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felt by flow in the shore parallel and the shore normal directicn.
Strong vortices with shore parallel axes will probably cause
much more resistance to longshore currents than to shore normal
ones.,

The general behaviour of bed forms under combinations
of waves and currents is also virtually unknown so far. We
only know that they loock very different under rip currents and

longshore currents of the same strength relative to aw.
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& LIST OF SYMBOLS
;. 3
b
a m Water semi excursion, eq. 4.8.
c(z) - Time averaged suspended sediment
concentration
<, - c(0)
cn - Drag coefficient, eg. 2.43..
CD - Drag coefficient for settling through
still water, eg. 3.19
t‘:]'D - Instantaneocus drag coefficient, eq. 3.13 .
and 3,15,
CM - Added mass ccefficient, eq. 3.13.
d m Grain diameter.
d m Mean grain diameter, eq. 4.4 .
D(z,t) - Non dimensional velocity deficit, eq. 2.16.
Dn(z) - Local amplitude of Fourier component of
D(z,t), eq. 2.22 . - .
E wm=2 Specific energy dissipation dus to bed
friction, egq. 2.54 .
. »
£ - Energy dissipation coefficient eq. 2.57 . o
£, - Wave friction factor, eq. 2.50,
approximately equal to f. . » '
£;’ - Friction factor corzesponding to eq. 2.62
and 2,63,
@
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Mp—2
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Friction factorx, roughly including

viscoug effects. eq. 5.19.
Acceleration due to gravity.
Water depth,

Wave haeight, measured from a trough to the

following crest.

Root-mean-square wave height,

Significant wave height.

Average wave height .

Imaginary unit = /=1 .

Wave number = 2m/L .

Deep watsr wave number,

Thickness of wave dominated layer, eq. 2.85.

vartical length scale of exponential o=

profile, eq. 2.9 (constant).
vertical length scale in general eq. 4.11.

vertical length scale for distribution of

velocity fluctuations, eq. 2.10.
Turbulence length scale, eq. 2.70.
Wave length,

Deep water wave length = gT2/2m.
Pressure.

Time averaged pressure.

d

-—;

-—y
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s
:‘ P Nm~2 Periodic pressure component.
Q mis=t Sediment flux per unit width,
Qm(z) m st Fourier coefficient of local sediment
flux, eq. 5.26.
r - m 7 Bed roughness.
r? - Goodness of fit, eq. 4.18.
R m Radius of vortex or particle gath.
s - Relative sediment density .
t s Tine .
ts s Spiralling time scale, eq. 3.51.
T s Wave period. Experimentally defined by zero
crossings of near-bed shore-normal
velocities.
u(z,t) ms™~} Borizontal water velocity.
u, (t) ms~! Velocity outside boundary layer.
u(z) ms"! Time average of u(z,t).
A(x,z,t) ns—* Total vater velocity in Chapter 3 .
;p (x,2,t) ns~! Total sediment particle velocity, eq. 3.1 , J
®
a(z,t) ns-! Periodic component of u(z,t). T
u, ns~! Friction velocity, eq. 2.86,
g, (2) ns=! Local amplitude of Fourier component of u. o )
%2 ns~? Local amplitude of a(z,t).
g ns~! Time averaged shore normal velocity, o
-—-—
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t
|
L‘ V e ns™! Root mean square vertical velocity
-ho
v (x,2Z,t) ms™ Sediment :velocity component due to flow
L accelerations, eq. 3.1.
\'4 - Variation coefficient for w, eq. 4.6.
3 v ns™! Time averaged longshore velocity
W, ms-? Sediment settling velocity
w e Average settling velocity of bed sediment
' -1 w
w ns w/w
x m Horizontal coordinate.
z m Vertical coordinate, measured from ripple
crest or flat bed level.
2, m Bed roughness parameter for steady flow.
z1 n Apparent bed roughness in wave-current boundary
layer.
) - See eq. 3.24
Y - See eq. 3.16
8 m Boundary layer thickness, broadly defined.
61 m Displacement thickness corresponding to
the fundamental mode of oscillatory velocity
eq. 2.59, )
4, m Complex displacement thickness, ag. 2.46 .,
:
€(2) m?g-? Sediment diffusivity,

e‘(z) n?s~! Apparent diffusivity, eq. 4.14.




mzs.l

Limitofeandeafcrz-bo.

Diffusivity due to non boundary layer

turbulence eq. 4.14 ,

Ripple height .

Shields parameter, eq. 5.15,

Skin friction shields parameter eq. 5.17,

Critical shields parametar for onset of

sediment motion.
von Karman's constant % 0.4.

Ripple length.

Kinematic viscosity of water,
Eddy viscosity.

Eddy viscosity due to wave boundary layer

turbulence .

Density of water.

Non dimensional elevation, eq. 4.22.

Shear stress.

Bed shear stress due to skin friction alone.

Sediment mobility number, eq. 4.9.

Angular velocity of waves = 27/T.

Angular velocity in vortices.

-1
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